Renewable energy – our downfall?

This essay below from Ralph Ellis was posted in comments a couple of days ago, and I decided to promote it to a full post.

For the record, let me say that I support some of the renewable energy ideas, even putting money where my mouth is, putting solar on my own home and a local school. However, neither project would have been possible without state subsidies. For renewable energy to work in our economy, it must move past the government  subsidy stage and become more efficient. It took over a hundred years t create our current energy infrastructure, anyone who believes we can completely rebuild it with the current crop of renewable energy technologies is not realistic. – Anthony

Renewable energy – our downfall? By Ralph Ellis

The government, under pressure from a disparate confederation of environmentalists and greens, have agreed to press ahead with a host of renewable energy sources, including wind, tidal and wave power. Yet, despite the vast sums of public money that will be allocated to these projects and the fundamental enormity of the decisions that have been made, there has been very little in the way of open debate on the subject. Like many aspects of today’s governmental system, the powers that be appear to have made a decision about future energy production based upon image, spin and the number of votes the policy will capture, while ignoring the basic truths and science that should be the foundation-stone of any policy. Nobody has even debated the absolutely fundamental question of whether any of these energy generation systems actually work. The media’s reaction to this steamrollered, image-based decision-making process has been muted to the point of being inaudible, and I can only assume that either very few in the media have any grasp of the calamitous implications of the government’s policy, or they are cowering behind their desks for fear of losing their jobs.

So why, then, do I consider renewable energy to be a danger to the entire nation, both economically and socially? This is, after all, ‘free energy’, and what can be the problem with a free resource? Well, as readers will probably be fully aware, no resource is free even if it appears to be so, and this is the first of the many lies about renewable energy that have been peddled by industry spokesmen and government ministers. Oil is not free, despite it just sitting in the ground; water is not free, despite it falling from the sky; nuclear power is not free, despite the raw materials being ridiculously cheap, and neither is any renewable energy resource ‘free’. In fact, the conversion process from ‘free’ renewable energy to usable grid electricity is remarkably expensive and its enormous costs are being subsidised by the consumer. In the UK, this subsidy is achieved through Renewables Obligation Certificates, the cost of which are eventually passed onto the consumer. In 2006 the cost to consumers was £600 million, and this is predicted to rise to £3 billion in 2020. 1 That is about £200 per household per annum, on top of current energy bills, for the privilege of using of ‘free’ energy.

Now one might argue that that is not very much money to demand from the public, given the advertised prospect of clean, renewable energy that will fuel our homes and our economy for the next few generations. Power at the press of a button, and not a drop of noxious emissions of any nature in sight – just an array of perfectly silent, gently rotating wind-turbines stretching towards the horizon – it is dream-world picture direct from the cover issue of an environmentalist magazine, and the answer to a politician’s prayers. In one master-stroke the environment is magically healed, and votes are captured by the million – roll on the next election.

However, it is my belief that this sublime day-dream actually holds the seeds for our economic decline and for social disorder on an unprecedented scale. Why? Because no technical and industrial society can maintain itself on unreliable and intermittent power supplies. In 2003 there were six major electrical blackouts across the world, and the American Northeast blackout of August 14th was typical of these. The outage started in Ohio, when some power lines touched some trees and took out the Eastlake power station, but the subsequent cascade failure took out 256 power stations within one hour.

The entire Northeast was down onto emergency electrical supplies, and the result was social and economic chaos. Nothing, in our integrated and automated world, works without electricity. Transport came to a grinding halt. Aircraft were grounded, trains halted and road traffic was at a standstill, due to a lack of traffic lights and fuel. Water supplies were severely disrupted, as were telecommunications, while buildings had to be evacuated due to a lack of fire detection and suppression systems. Without any available transport, many commuters were forced to sleep in offices or in Central Park, and while the summer temperatures made this an office-adventure to remember, had this been winter the results of this electrical failure could have been catastrophic.

This is what happens to a major technical civilisation when its life-blood, its electrical supply, is turned off. Chaos looms, people die, production ceases, life is put on hold. Yet this was just a once-in-a-decade event, a memorable occasion to laugh about over dinner-parties for many years to come, but just imagine what would happen to a society where this happened every week, or if the power was cut for a whole fortnight or more. Now things are getting serious. Without transport, refrigeration, computers and key workers, food production and distribution would cease. Sleeping in Central Park on a balmy summer’s night is a memorable inconvenience, whereas fifty million empty bellies is getting very serious indeed. In fact, it is a recipe for violence and civil unrest.

But what has all this doom and gloom got to do with the government’s drive for renewable energy, you might ask? Well, the entire problem with renewables – almost all renewables – is that they are dangerously intermittent power sources.

Perhaps the first renewable source we should discuss is tidal power. Unfortunately, while tidal power initially looks like a dream power source of cheap, renewable energy, it suffers from massive variability in supply. The energy that it produces is tidal, and the tides are, of course, linked to the orbit of the Moon, with there being about two tides every day. This sinusoidal tidal pattern produces four slack periods during each day when the tide is turning, either at high tide or at low tide, and during these slack periods the tidal power system will not generate any electricity at all. Unfortunately, the energy that is produced is therefore delivered at set periods of the day which are connected to the orbit of the Moon, rather than our daily lives, and so the electricity produced is in no way synchronised with the electrical demand cycle. If these slack periods coincide with the 7-am and 7-pm peak demands for electricity, as they will several times a month, then the whole generating system is next to useless.

Since the energy produced earlier in the day cannot be stored, as will be explained later, extra generating capacity will have to be brought on-line to cover the deficiency. This means that for every tidal system installed, a conventional power station will have to be either built or retained to ensure continuity of energy supply. But this power station will have to be up and running all the time, what is known in the industry as ’spinning-reserve’, as it takes up to 12 hours to bring a power station on-line from a cold start-up. Thus if we are to maintain continuity of supply, this wonderful ‘free-energy’ tidal source actually results in twice the cost and saves very little in the way of hydrocarbon fuels. So, unless we are prepared to accept rolling power cuts across the country, which would result in the same chaos as the Northeast blackout, it is unlikely that we could ever successfully integrate large tidal power systems into the National Grid.

While tidal power may be predictably intermittent, wind power is even more problematical. Recent EU directives have stipulated that some 40% of electricity should be powered from renewable resources by 2020. If this were to be predominantly produced from wind turbines, as is likely, then we would need some 30 gigawatts (gw) of wind generating capacity. To put that figure in perspective, the UK currently has about 0.5 gw of wind capacity. However, that is not the full story, for UK wind turbines are only currently delivering about 25% of installed capacity, due to wind fluctuations and maintenance issues. That means we actually need some 120 gw of installed wind generation capacity to cover just 40% of total UK electrical demand. If the turbines being constructed average 2 mw rated capacity, then we shall need some 60,000 wind turbines to be installed over the next twelve years. And where shall we erect all those? – Certainly Not In My Back Yard.

But building thousands of wind turbines still does not resolve the fundamental problem, for the real problem here is the enormous scale of wind variability. I saw a wind-power spokesman the other week on the flagship BBC Hardtalk series, who claimed that the number of days without wind power in the UK were as rare as hen’s teeth – a comment that went totally unchallenged. Well all I can say, is that the hens in the UK must look like a Tyrannosaurus Rex.

The truth of the matter is that there are numerous days without significant winds across the UK, and when those conditions occur it doesn’t matter how much installed generating capacity we have, for it all goes off-line. A report from Denmark 2 indicates that the Danish ‘wind carpet’, which is the largest array of wind turbines in Europe, generated less than 1% of installed power on 54 days during 2002. That is more than one day every week of the year without electrical power. However, if we broaden the definition of ‘without power’ slightly, the same Danish ‘wind carpet’ generated less than 10% of installed capacity for some 16 weeks during 2003. Yet Denmark has the same kind of northerly, maritime weather systems as does the UK. Thus the wind-generation industry is lying to us, once more, for a ‘wind carpet’ that generates less than 10% of installed capacity it next to useless, for the national electrical grid will never cope with such a massive reduction in power supply. In fact, wind generation is so useless, that Denmark, Europe’s largest wind generating nation by far, has never used any of its wind-generated electricity – because it is too variable. It is almost impossible to integrate wind power into a normal generating grid, and so Denmark has merely exported its variable wind supplies to Norway and Sweden. 3 These nations can cope with these electrical fluctuations because of their abundance of hydro-electric power, which can be turned on and off quite rapidly, unlike most other generating systems.

This revelation, that wind power is totally unusable, brings us onto the other great lie of renewable energy proponents – the lie that renewable power can somehow be stored to cope with power outages. The first of these miraculous energy storage facilities, that is said to come to the aid of the thousands of wind-turbines that lie motionless across the entire nation, is the pumped water storage system. However, this claim is utter nonsense, and for the following reasons:

a. Our present pumped storage systems are already fully utilized in overcoming variability in electrical DEMAND, and so they have absolutely no extra capacity for overcoming variability in SUPPLY due to the unreliable wind and tidal generation systems.

b. Pumped storage systems currently only supply a very small percentage of the grid (about 5%) for just a few hours, while wind generation systems can go off-line for days or weeks at a time, as the Danish generation report clearly demonstrates. To put this argument into figures, the Dinorwig power storage system, the largest in the UK, can provide 5% of the UK’s power generation requirements (2.9 gw) for up to 5 hours before it runs out of water. (Thus the total capacity of Dinorwig is 14.5 gwh). If the UK was entirely dependent on wind power, a wind outage lasting just two days would require 140 storage stations with the same generating capacity as Dinorwig to maintain normal power supplies (assuming average UK demand of 1,000 gwh/day). As the Danish report confirms, power outages lasting a week or more are the norm, rather than the exception, and so if the UK generated a significant proportion of our electrical capacity from wind-turbines, as the EU has argued, the lights and heating systems would be going out, the computers going down and transport systems failing all over the country.

c. Pumped storage systems are not only hugely expensive to construct, the topography of Britain ensures that very few sites are available, and so we will never be able to store significant amounts of our energy requirements. These storage systems also tend to be situated in areas of outstanding natural beauty, and so – you have guessed it – the Greens oppose the very storage system they are promoting.

The same kind of argument can be sustained for flywheel energy storage, compressed air storage, battery storage and hydrogen storage – for each and every one of these systems is highly complex, very expensive, hugely inefficient and limited in capacity. The much hyped ‘Hydrogen Economy’ is one of these technological cul-de-sacs. It should be stated from the outset that hydrogen is not an energy source, but an energy storage system – a ‘battery’. The hydrogen has to be created before it is used, and it merely stores the energy that is flowing through the normal electrical grid. Unfortunately for the proponents of this clean ‘energy system’, hydrogen powered vehicles and generators are only about 5% efficient. A huge amount of energy is wasted in the production, liquification and storage of the hydrogen, and so hydrogen will not be propelling our cars, nor will it be storing energy for when the wind stops blowing. In addition, hydrogen storage vessels are highly flammable and potentially explosive, and I for one would rather have a nuclear power station on my doorstep than a hydrogen facility. However, the final unsayable truth about hydrogen powered vehicles (and electric vehicles) is that we would have to double or treble the number of power stations to cope with this electrical demand. The fact that many cars would recharge overnight would be useful in evening out electrical demand, but the number of power stations in the UK would at least double. Now what would the Greens have to say about that?

In short, it would appear that some of the proponents of these storage systems simply have no concept of the huge amounts of energy that a nation like Britain uses within a normal week. There is no energy system available that can remotely be expected to replace renewable energy resources, while they lie dormant for weeks on end. These and other delusions that are being being peddled by renewables proponents are downright dangerous, as they give ignorant ministers in government the impression that we can maintain this nation on renewable energy supplies. But nothing could be further from the truth, and the 2003 blackouts demonstrate the seriousness of the consequences if we do run out of electrical power.

Nuclear

But if the large-scale use of renewable energy systems is utterly impractical, there has to be a solution to our energy supply problems; because even in the short term our dependance on foreign oil and gas places us at the mercy of oil and gas owning despots, who will seek to gain every leverage possible over us. Look at the current situation in the Middle East and Russia and multiply that by ten, and you have some idea of our future political situation if we become solely dependent on foreign energy supplies.

In addition to this – for every year we delay in getting reliable and internally sourced energy supplies, millions of tonnes of a valuable mineral resources are literally going up in smoke. Nearly everything we need in our modern world needs oil as a raw material to make it – no oil supplies not only means no energy, but also no raw materials too. When the last barrel of oil comes out of the ground – and if alternate energy provisions are not already in place – human civilization as we know it will cease to exist. That is neither an exaggeration nor a joke, for absolutely nothing in our modern world will work without adequate energy supplies and petrochemical raw materials to make the things we so often take for granted.

What ever you may think about the technology, the ONLY reliable answer to our energy supply and global warming problems for the foreseeable future is going to be nuclear power (either fission or fusion). Ok, so nuclear power has got a bad name through Chernobyl and a few other incidents, but the Chernobyl plant in particular should never have been allowed in the first place. The RBMK design was (and still is) a rudimentary graphite moderated steam cooled plant with no containment vessel – indeed, it was no better that the original ‘graphite pile’ in the Manhattan Project (circa 1943). Remember that graphite and steam are an explosive combination if they get hot enough, and that’s exactly what happened at Chernobyl (this was NOT a ‘nuclear’ explosion). This arrangement should never have been allowed at the design stage, which is why the British AGRs (Advanced Gas Reactors) used an inert gas coolant. In addition, both the AGR and the the USAs PWRs (Pressurized Water Reactors) are naturally fission-stable, and their very nature will resist and counter a runaway thermic event like that which occurred at Chernobyl.

While the early designs of nuclear power stations have highlighted the problems that poor design or construction can pose, our design and technological capability has moved on in great strides. The Russian RBMKs are the equivalent of a model T Ford, the British AGRs represent Morris Minor technology from the ’60s, but we are now capable of producing Bugattis and Ferraris – which provide a quantum leap in terms of safety and efficiency. The point is that there are methods of reducing nuclear risks if we put our minds to it, and the latest design from Westinghouse – the AP1000 – will be able to deliver ten times the efficiency of the reactors in current use. (Which makes it odd that the UK government have just sold Westinghouse to Toshiba of Japan, just as orders for new power stations are about to be signed.)

Therefore, we could supply Britain’s entire current and future energy requirements with nuclear power, while only using the same amount of nuclear material that is in circulation today (and which produces just 20% of our needs). Remember also that nuclear power is non-polluting in terms of greenhouse gasses, acid rain and other noxious emissions, and thus all of the reductions that we aspire to make in these pollutants could be achieved in a stroke if we turned to nuclear power.

And when it comes to nuclear safety issues, let us not forget that thousands of people in ships and submarines live in close proximity to nuclear plants with no ill-effects. Also remember that while nuclear power has acquired a bad name, courtesy of some sections of the media, far more ecological damage has been done and many more people have died though oil and coal extraction, over the past decades, than in nuclear power incidents. Remember Piper Alpha, Aberfan, Torry Canyon, Exxon Valdes, etc: etc:? The list is almost endless, especially if one includes all the coal-pit disasters in Russia and China, from which much of our energy, in terms of finished products, is now sourced. If a nuclear power station had killed a whole school full of children the environmentalists would never let us forget it, but because it was the result of the coal industry they let the memory fade. If 6,000 workers were killed every year in the nuclear industry Greenpeace would go ballistic, but because these are coal mining deaths in China they are ignored. Why do some people exhibit these double standards? What is it about technical progress that they so despise? In some respects, some of these anti-nuclear demonstrators appear to be portraying themselves as the world’s very own technological Taliban, and in this guise they must be vigorously opposed.

However, it should be borne in mind that fission power is only a temporary stop-gap that will maintain our economy and civilisation over the next century until something better comes along. Nuclear fusion may well be that brighter future, but for all the reasons already given we need a solution now, not in 30 year’s time. Nuclear fission will provide a stop-gap for that vital century, but fission power on its own is a non-renewable energy resource. The way forward has to be fast-breeder fission, where the nuclear core creates its own fuel supply, a technique that has already been demonstrated and perfected. This energy source would provide the world with 1,000 years of energy, a large enough stop-gap to allow all kinds of new exotic energy sources to be discovered and exploited.

We have about 30 or so years before the shortage of oil becomes acute and our economies and societies begin to falter, and that is not very much time in which to alter our entire energy production industry. It is like relying on the Victorians to plan ahead and ensure that we still had a viable civilisation in the 1930s. And while the Victorians were both successful and resourceful, history demonstrates that new sources of raw materials were never actively planned until the old sources were in desperately short supply or worked-out completely. However, the introduction of a new, nationwide power generating system is an extremely long-term investment, and if we are to make this change without a dramatic interruption to our energy supplies (and our society) we need foresight, vision and a quick decision. What we need is a tough, educated, talented, rational leader to take a difficult but responsible decision to dramatically increase our nuclear energy production capability. However, what we have in the UK is Gordon Brown!

Ralph Ellis

June 2004

1. David Derbyshire, Daily Mail 5th Feb 2008.

2 & 3 Hugh Sharman, Why wind power works in Denmark.

Get notified when a new post is published.
Subscribe today!
0 0 votes
Article Rating
382 Comments
Inline Feedbacks
View all comments
GK
May 25, 2009 1:32 am

I would like to add – regarding the “hydrogen economy”
If you burn H2 in cars, the exhaust output is not CO2 as in regular fuels, but H20 – water. That might make your average greenie moron swoon with delight, except that they dont realise that H20 is many many many times stronger a greenhouse gas than C02. If you believe in AGW, then the WORST thing you can put into the atmosphere is water vapor, and that is exactly what Hydrogen fuel will do.

Neil Jones
May 25, 2009 1:34 am

“One of the mysteries of our time is how impossible it is to interest people in the mind-boggling sums cited by governments all over the world as the cost of the measures they wish to see taken to “stop climate change”
This article might make an interesting read http://www.telegraph.co.uk/comment/columnists/christopherbooker/5374207/Climate-Change-Act-Now-the-world-faces-its-biggest-ever-bill.html

Chris Wood
May 25, 2009 1:40 am

The Greens oppose technical progress because it is necessary to destroy it as part of their political agenda to destroy capitalism and globalization. Green Peace ceased to be an environmental group a long time ago. It merely uses the environment as a cover.

Ken S
May 25, 2009 2:06 am

Ralph,
Clearly a heartfelt, passionate argument for the continuation of a civilization on the basis of a strong requirement for and dependence on continuous and reliable supplies of energy. It would be good to see an inclusion of Solar in this exposition, if only to lay out the differences that may exist, if any, as compared to Tidal or Wind.

May 25, 2009 2:16 am

Ok, so nuclear power has got a bad name through Chernobyl
Last count I heard was 56 fatalities, mostly the gutsy guys who went in to fight the fire. The whole area is now a nature preserve, and nature doesn’t seem to mind the radiation level, which has dropped significantly.

Ghillie
May 25, 2009 2:28 am

What a clear, succinct and erudite essay, written in a style that everyone can understand. It is just the sort of article to help counter some of the unopposed lunacy we face in coming years. Ralph Ellis should – and has a responsiblity to – send it to every mainsteam paper in UK and to the Sundays too for publication as an article rather than a letter. But perhaps he has and it has been spiked – that would be no surprise in these days of selective information management.
Small point – Is the date at the bottom correct?

Julian Braggins
May 25, 2009 2:40 am

No argument from me, a very sensible outline of the power predicaments. Thorium might have got a mention, inherantly stable , on paper, more of the raw material than uranium and less long term waste disposal problems (but we have safe solutions already for uranium) but have yet to see a working prototype. I read that the head of Germany’s power production resigned over the impossibility of integrating the 17% of their power produced by wind into the grid for the same reasons that Denmark has, the need for spinning backup to equal it.

Mike Borgelt
May 25, 2009 2:41 am

When it comes to nuclear fission energy production we absolutely DO NOT want to produce Bugattis and Ferraris. Try Hondas and Toyotas .

Gianfranco
May 25, 2009 2:43 am

interesting!
and the problem of nuclear waste? how to be addressed?

May 25, 2009 2:48 am

I admire that phrase, “A technical Taliban.” It puts things in a nut-shell, and nicely fits a bumper sticker.
Due to an icestorm, much of my town went without power for over a week last December, and I can tell you it was no picnic. Once pipes started to freeze people lost their sense of humor, and when the cheap generators started burning out, (for they were never designed to run non-stop for days, ) a certain grimness filled all faces. I can now joke about everyone having “bad hair days,” and about children wishing school would open once they realized computers didn’t work, but at the time all life was reduced to just-getting-by. After getting wood for a fire, and chopping through ice to get water for the toilet, and heating brook-water for washing, and driving twenty miles to find a gas station that worked and to buy bottled water, little time was left for anything else. Tempers got short. And when the power finally came back on, gratitude was huge.
Environmentalism is given a bad name by the Eco-Taliban. In many ways they remind me of pot-headed Hippies I knew back in 1969:
While living in the lap of luxury at college the Hippies would criticize their parents, inventing reasons they couldn’t work the jobs their parents worked, and dreaming up marijuana-inspired “alternative lifestyles” which sounded like fun, when discussed while stoned out of their gourds. However once they attempted to make the “alternative lifestyles” real, all sorts of problems surfaced, and communes which began with high ideals swiftly disintegrated into nasty quarrels about who should wash the dishes, and where the funds were going to come from if no one worked. On the sly, most were secretly writing their parents, “Send money.” In the end the Hippies either broke down and compromised their high ideals by getting a “real job,” or they found some way to stay in college.
When in a cynical mood I feel it is the ones who never left college who are attempting to run the show, these days. There are certain fundamental facts they somehow have never gotten around to facing.

gary gulrud
May 25, 2009 3:01 am

Alarmist, five years ago!

M White
May 25, 2009 3:04 am

“The (WELSH) government development plans, which are legally binding, are far in advance of anything planned for England or Scotland and would see it become energy self-sufficient in using renewable electricity within 20 years and reduce waste to zero by 2050.”
http://www.guardian.co.uk/environment/2009/may/22/wales-energy-efficient-plans
“We are committed to making annual 3% cuts in greenhouse gas emissions from 2011”
Wales, part of the United Kingdom with a population of just under 3 million

Mikkel
May 25, 2009 3:05 am

Hi
With regards to the Danish wind-carpet could you please provide a link/source? Don’t get me wrong. As a Dane myself I am fully aware of the problems associated with wind and am by no measure a fan of the way it is being utilized as of the moment. But 54 days at that low production does not resonate with the data available in from the Danish authorities which provide data for the production on an hourly basis. Thus, just curious as for you source?
On a different but related note I have an ambivalent view on not only the supporters of wind power/’green power’ but also the opponents. Without a doubt wind power is a lot more expensive than many other forms of energy. However as a liberal in terms of economics I also support the view that efficiency is not the controlling parameter for whether a product belongs in the marketplace. Sure price is important but we all know that a lot of products we use every day is not ‘efficient’ in a strict economic sense. We wear shirts and jeans which cost more than the cheapest available. We don’t eat the cheapest food. We don’t drive the most cost effective car and so on. We let so many other parameters influence our choices which is a good thing – after all we are humans and not homus economicus. My problem with wind power is that opponents to wind shouldn’t be ‘fighting’ the implementation of wind but instead the way it’s being done. Rather than government subsidies directly or in the form of tax reductions it should be possible for consumers to purchase the kind of power they would like. Obviously there is a demand for ‘green’-energy. Well then let people be able to sign up for ‘expensive’ power and pay twice the price for their electricity. I couldn’t care less what my neighbor pays for his electricity as long as he has a choice. If he e.g. lives in California let him pay the added cost of the product he demands and there will be a supply from wind farms on the coast or from solar plants in Nevada where they are able to ‘store’ energy in salt-silos and thus address one of the issues of reliability of the energy-source. Again sure it is more expensive but as I don’t care if people shop for their clothes in Walmart or on Rodeo Drive I don’t have a problem with ‘greenies’ putting their own money where their mouth is. Only problem it is not possible as it is today because of how the energy markets are designed with Government having way to much influence. We all should know how that inevitably distorts markets and supply/demand mechanisms. Not an easy task due to the nature of the product (energy) which is futile and hard to store. The storage problem can be worked on however. In Nevada, Spain and Germany the use heated salt as a medium for storing energy. In Sweden and Norway the use wind power to pump water back up into higher grounds so that hydropower can be used more reliably. All more expensive forms of energy-production for sure, but again who cares as long as there is a market based demand for the products, where some consumers based on whatever ‘logic’ attributes ‘quality’ to that form of power-generation.
In terms of politics the advantage of a ‘market’ based discussion instead of the current pro/against one is that it will clearly demonstrate to the greenies if in fact people are willing to pay for the energy or not. It will in fact shift their focus to addressing people and consumers rather than lobbying behind closed dors with government.
Slightly off topic for which I apologize. More on topic I support the idea that more nuclear plants be build. Great angle that it is done to ‘alleviate’ the Chinese coalminers of their sufferings. Now who could argue with that? Opposing nuclear energy due to ‘fear’ of local death and destruction is in a sense supporting exporting IRL perils to the poor coalminers in China, South Africa, Columbia etc..
Sorry for misspellings and bad language. And thanks to Anthony and contributors for a great blog which is enjoyed regularly.

Supercritical
May 25, 2009 3:10 am

Anthony,
Given the sentiments expressed in your preface, I would welcome a short article, or series, on all of the more outlandish concepts for energy generation and storage or sourcing that are being generated.
One of my favourites is the possibilty of recombining CO2 and H20 to form methane, by making use of the enormous pressures and temperatures at the mid-ocean thermal vents.
But there may be a huge number of similar kinds of interesting speculative ideas, which at the least may give us some hopefull discussion as a couterbalance to the undeniable eeyorism of the ‘greens’.

M White
May 25, 2009 3:10 am

Straight from the horse’s mouth
http://wales.gov.uk/news/latest/090522sdscheme/?lang=en
“First Minister Rhodri Morgan today said all parts of Welsh society will have to play their part to fashion a sustainable future and a Wales fit for generations to come.”

Perry Debell
May 25, 2009 3:12 am

Within the boat building industry, they’ve been wrestling with the problems of providing electrical power afloat for many years. On page 38 of Professional Boat Builder http://www.proboat-digital.com/proboat/e20090607/ one will find an article by Nigel Calder, in which he describes his efforts to advance the cause of full personal comfort at maximum efficiency. See also page 136 http://www.proboat-digital.com/proboat/e20081011/
In his article, Nigel makes reference to previous articles he has written, on the subject, all of which can be retrieved via the Archive button. They are a “must read”. Granted it doestake money to purchase the equipment that would enable a family to come off the national grid, whilst still retaining all the mod cons, but the method is described in detail and were I considering building a new house, then making full use of every amp of self generated electricity and every BTU of fuel I would gather for heating and cooking would be properly assessed on a cost benefit basis and not using the calculations of Mann, Steig, Santer, Hansen and the rest of nutters who want to bankrupt the world economies.
Fuel prices were once set by business considerations. Now those prices are controlled by corrupt politicians to have power over the population. How long will it be before we have laws that demand all types of fuel are purchased from state owned owned suppliers and no, you cannot gather fallen branches anymore either!
Are our 800-year-old rights to gather firewood for the chop?
http://www.guardian.co.uk/uk/2008/oct/28/9

Nick Luke
May 25, 2009 3:14 am

Hmmmm, Nice essay. Just to add to the nay-saying on pumped storage; Mr Ellis didn’t emphasise the point that in a pump-storage energy cycle, the reserves have to be repenished a the same time as the primary source is again taking the load. Again this means installing much larger primary capacity than would otherwise be the case. If the primary source has only enough capacity either re-fill the tank or meet the load what use is that?

JamesG
May 25, 2009 3:21 am

Some very good points are made, especially with hydrogen but, as usual, there is a tendency to go too far in making those points:
1. The costs of wind or underground storage are as nothing compared to nuclear plants, particularly decommissioning costs. Sellafield is being decommissioned now and the costs are spiraling out of control – the latest estimate being 80 billion. And just ask Norwegians how they feel about nuclear reprocessing from the Thorpe plant. Many other plants need decommissioned too as well as the massive and costly operation to build new plants. There just isn’t the money, which will soon be realized by the powers that be! There is a place for nuclear – particularly the newer designs and the Thorium plants but there is a very good argument for diversity too, particularly if your main worry is domination by the fuel suppliers.
2. Nobody, not even the EU, has suggested that wind power be the number one provider of electricity so all of the scary scenarios suggested are just not applicable. If wind forms between 20% – and experience suggests 20% is a good minimum assumption for several countries because you just don’t get doldrums on most windmill sites. As such very windy sites are limited it naturally limits windmill expansion anyway. Look at the Danish wind energy website: they have a FAQ which points out some of the basic accountancy errors that are made too often by journos and economists.
3. Those blackouts talked about arose under fossil fuels domination. There is an odd idea going around that coal plants are flexible to cope with demand. Well they aren’t! You get around these problems by anticipating demand and oversupplying.
4. There are significant gains to be made by geothermal heating which is still in its infancy. If we spent money on that instead of being obsessed with buying a new car every year – perhaps even with low interest credit then the money wouldn’t be an issue. Imagine if every new house was forced to install it and hence be forced to suffer at least 50% savings on heating/cooling costs.

Allen63
May 25, 2009 3:26 am

Agree with the article.
Nuclear is cheaper than coal, available, safe, clean and raw fuel is abundant (for a one or two thousand years into the future). The amount proposed to be collected by Cap&Trade over the next 8 years would pay for all the plants needed in the USA.
If, as the greens say, “we let the science decide”, then Nuclear is a “no brainer” — if one is serious about sustainable energy, AGW, and/or the environment.

Frederick Davies
May 25, 2009 3:28 am

“Technological Taliban”: now that is a catchy phrase.
This article in very instructive concerning the practical problems of energy generation and the need for a renewed investment in nuclear energy, but the author should read “The Ultimate Resource 2” by Julian Simon before saying utterly stupid things like “history demonstrates that new sources of raw materials were never actively planned until the old sources were in desperately short supply or worked-out completely”. For example, the move from coal-power to oil-power did not happen because we were running out of coal, or because coal was in “desperately short supply”, it was done because oil products were more efficient and could be transported more easily. The “resources are finite” meme needs to be put out of its misery once and for all!

Telboy
May 25, 2009 3:33 am

Interesting post which sets out clearly the drawbacks associated with renewable energy sources, but perhaps overly pessimistic about the availability of oil in the future in the light of Steven Goddard’s post on this site titled ‘ Energy Availability Is Almost Infinite’

3x2
May 25, 2009 3:37 am

I see this problem with many greens, the inability to see scale. The eyes, of those I have met at least, glaze over once you get much past ‘mega’. It is as though they see ‘mega’ as being a big number and therefore enough.
I find it difficult to get them past that and into 9, 12 or 15 zero’s. So that when you get to a UK reasonable 350, 000, 000, 000, 000 W the ‘green fuse’ has blown and they are in arm waving spasms. The conversation at that point has shifted from practical supply problems to rationing and a move to some kind of fantasy green future.

Sam the Skeptic
May 25, 2009 3:49 am

I latched onto the phrase “technological Taleban” as well. Very useful!
Some more in-depth articles on nuclear power would be helpful. There seems to be a variety of views around as to whether storage and clean-up is or is not going to be a problem in future years.
I know that decommissioning costs for the current generation are sizeable but I have read somewhere that the next generation will be able to re-use fuel until it virtually ceases to exist.
It looks to me as if the eco-fascists arguments against nuclear power are based on the fact that it *is* clean, cheap and reliable.
Wasn’t it Ehrlich who said, “Giving society cheap, abundant energy would be the equivalent of giving an idiot child a machine gun.”? As far as I recall he never explained why that should be.

3x2
May 25, 2009 4:14 am

JamesG (03:21:50) :
Sellafield is being decommissioned now and the costs are spiraling out of control – the latest estimate being 80 billion.

Which looks like a bargain next to carbon taxes. It also assumes that having discovered this hidden cost in older reactor designs new designs will make the same mistake.
“In the US, the latest costing of President Obama’s “cap and trade” Bill is $1.9 trillion, a yearly cost to each US family of $4,500.” Decommissioning just looks better all the time. Defrayed across the life of the reactor (let’s say 30 years) even 80 billion per reactor looks like very good value for money in comparison.

JamesG
May 25, 2009 4:22 am

I’m convinced the future is in gas anyway: Much cleaner, more efficient efficient and abundant whether natural or by gasification of coal/shale or garbage. And cheaper than digging for a lot of the 200 to 500 years worth of coal that is uneconomic just now. It should even be possible to easily extract the CO2 by gasification. Then all you need do is find a market for it. Let’s see: You can force it down stripper wells to get oil out, you can force feed super greenhouses with it to feed the coming food demand, use it to displace water in quick-setting flexible concretes, use in the new breed of HFC refrigerators…Indeed there are some reasons to expect to make money out of CO2.

1 2 3 16