Basil Copeland and Anthony Watts
Image from NASA GSFC
Many WUWT readers will remember that last year we presented evidence of what we thought was a “solar imprint” in globally averaged temperature trends. Not surprisingly, given the strong interest and passion in the subject of climate change and global warming, our results were greeted with both praise and scorn. Some problems were pointed out in our original assessment, and other possible interpretations of the data were suggested. Some WUWT readers have wondered whether we would ever follow up on this.
We have been quietly working on this, and having learned much since our initial effort, are as persuaded as ever that the basic premise of our original presentation remains valid. We have tried out some new techniques, and have posted some preliminary trials on WUWT in the past few months, here, and here.
However, questions remain. Since a lot of bright and capable people read WUWT, rather than wait until we thought we had all the answers, we have decided to present an update and let readers weigh in on where we are at with all of this. We have, in fact, drafted a paper that we might at some point submit for peer review, when we are more comfortable with some of the more speculative aspects of the matter. What follows is taken from that draft, with some modification for presentation here.
For those that prefer to read this in printed form, a PDF of this essay is available for download here
Introduction
Evidence of decadal and bidecadal variations in climate are common in nature. Classic examples of the latter include the 20 year oscillation in January temperature in the Eastern United States and Canada reported by Mock and Hibler [1], and the bidecadal rhythm of drought in the Western High Plains, Mitchell, Stockton, and Meko [2], and Cook, Meko, and Stockton [3]. Other examples include a bidecadal (and pentadecadal) oscillation in the Aleutian Low, Minobe [4]; rainfall and the levels of Lake Victoria, East Africa, Stager et al. [5]; and evidence from tree rings along the Russian Arctic, Raspopov, Dergachev, Kolstrom [6], and the Chilean coast, Rigozo et al. [7].
Evidence of decadal or bidecadal oscillations in temperature data, however, especially upon a global scale, has proven to be more elusive and controversial. Folland [8] found a spectral peak at 23 years in a 335 year record of central England temperatures, and Newell et al. [9] found a 21.8 year peak in marine air temperature. Brunetti, Mageuri, Nanni [10] have reported evidence of a bidecadal signal in Central European mean alpine temperatures. But the first to report bidecadal oscillations – of 21 and 16 years – in globally averaged temperature were Ghil and Vautard [11]. Their results were challenged by Eisner and Tsonis [12], but were later taken up and extended by Keeling and Whorf [13, 14].
No less unsettled is the issue of attribution. Currie [15], examining U.S. temperature records, reported spectral peaks of 10.4 and 18.8 years, attributing the first to the solar cycle, and the latter to the lunar nodal cycle. In the debate over the bidecadal drought cycle of the Western High Plains, Mitchell, Stockton, and Meko [2] concluded that the bidecadal signal was a solar phenomenon, not a lunar one. Bell [16, 17] and Stockton, Mitchell, Meko [18] attributed the bidecadal drought cycle to a combined solar and lunar influence, as did Cook, Meko, and Stockton [3]. Keeling and Whorf [13], working with globally averaged temperature data, reported strong spectral peaks at 9.3, 15.2, and 21.7 years. Eschewing a simpler combination of solar and lunar influences, they proposed a complex mechanism of lunar tidal influences to explain the evidence [14].
The past decade has seen only sporadic interest in the question of whether decadal and bidecadal variations in climate have a solar or lunar attribution, or some combination of the two. Cerveny and Shaffer [19] and Treloar [20] report evidence of tidal influences on the southern oscillation and sea surface temperatures; Yndestad [21, 22] and McKinnell and Crawford [23] attribute climate oscillations in the Arctic and North Pacific to the 18.6 year lunar nodal cycle. But interest in discerning an anthropogenic influence on climate has largely eclipsed the study of natural climate variability, at least on a global scale. There continue to be numerous reports of decadal or bidecadal oscillations in a variety of climate metrics on local and regional scales, variously attributed to solar and or lunar periods [3-7, 10, 19-27], but little has been done to advance the state of knowledge of lunar or solar periodic cycles on globally averaged temperature trends since the final decade of the 20th Century.
Besides the shift in interest to discerning an anthropogenic influence on global climate, the lack of agreement on any kind of basic physical mechanism for a solar role in climate oscillations, combined with the apparent lack of consistency in the relation between solar cycles and terrestrial temperature trends perhaps has made this an uninviting area of research. The difficulty of attributing temperature change to solar influence has been thoroughly surveyed by Hoyt and Schatten [28]. In particular, there are numerous reports of sign reversals in the relationship between temperature and solar activity in the early 20th century, particularly after 1920 [28, pp 115-117]. More recently, Georgieva, Kirov, and Bianchi [29] surveyed comprehensively the evidence for sign reversal in the relationship between solar and terrestrial temperatures, and suggested that these sign reversals are related to a long term secular solar cycle with solar hemispheric asymmetry driving the sign reversals. Specifically, they argue that there is a double Gleissberg cycle in which during one half of the cycle the Southern solar hemisphere is more active, while during the other half of the cycle the Northern solar hemisphere is more active. They argue that this solar hemispheric asymmetry is correlated with long term terrestrial climate variations in atmospheric circulation patterns, with zonal circulation patterns dominating in the 19th and early 20th century, and meridional circulation patterns dominating thereafter (see also [30] and [31]).
In our research, we pick up where Keeling and Whorf [13, 14] leave off, insofar as documenting decadal and bidecadal oscillations in globally averaged temperature trends is concerned, but revert to the explanation proposed by Bell [16] and others [3, 18], that these are likely the result of a combined lunisolar influence, and not simply the result of lunar nodal and tidal influences. We show that decadal and bidecadal oscillations in globally averaged temperature show patterns of alternating weak and strong warming rates, and that these underwent a phase change around 1920. Prior to that time, the lunar influence dominates, while after that time the solar influence dominates. While these show signs of being correlated with the broad secular variation in atmospheric circulation patterns over time, the persistent influence of the lunar nodal cycle, even when the solar cycle dominates the warming rate cycles, implicates oceanic influences on secular trends in terrestrial climate. Moreover, while analyzing the behavior of the secular solar cycle over the limited time frame for which we have reasonably reliable instrumental data for measuring globally averaged temperature should proceed with caution, if the patterns documented here persist, we may be on the cusp of a downward trend in the secular solar cycle in which solar activity will be lower than what has been experienced during the last four double sunspot cycles. These findings could influence our expectations for the future regarding climate change and the issue of anthropogenic versus natural variability in attributing climate change.
In our original presentation, we utilized Hodrick-Prescott smoothing to reveal decadal and bidecadal temperature oscillations in globally averaged temperature trends. While originally developed in the field of economics to separate business cycles from long term secular trends in economic growth, the technique is applicable to the time series analysis of temperature data in reverse, by filtering out short term climate oscillations, isolating longer term variations in temperature.
For the mathematically inclined, here is what the HP filter equation looks like, courtesy of the Mathworks
The Hodrick-Prescott filter separates a time series yt into a trend component Tt and a cyclical component Ct such that yt = Tt + Ct. It is equivalent to a cubic spline smoother, with the smoothed portion in Tt.
The objective function for the filter has the form
where m is the number of samples and λ is the smoothing parameter. The programming problem is to minimize the objective over all T1, …, Tm. The first sum minimizes the difference between the time series and its trend component (which is its cyclical component). The second sum minimizes the second-order difference of the trend component (which is analogous to minimization of the second derivative of the trend component).
For those with an electrical engineering background, you could think of it much like a bandpass filter, which also has uses in meteorology:
Outside of electronics and signal processing, one example of the use of band-pass filters is in the atmospheric sciences. It is common to band-pass filter recent meteorological data with a period range of, for example, 3 to 10 days, so that only cyclones remain as fluctuations in the data fields.
(Note: For those that wish to try out the HP filter on data themselves, a freeware Excel plugin exists for it which you can download here)
When applied to globally averaged temperature, the HP filter works to extract the longer term trend from variations in temperature that are of short term duration. It is somewhat like a filter that filters out “noise,” but in this case the short term cyclical variations in the data are not noise, but are themselves oscillations of a shorter term that may have a basis in physical processes.
This approach reveals alternating cycles of weak and strong warming rates with decadal and bidecadal frequency. We confirm the validity of the technique using a continuous wavelet transform. Then, using MTM spectrum analysis, we analyze further the frequency of these oscillations in global temperature data. Using sinusoidal model analysis we show that the frequencies obtained using HP smoothing are equivalent to what are obtained using MTM spectrum analysis. In other words, the HP smoothing technique is simply another way of extracting the same spectral density information obtained using more conventional spectrum analysis, while leaving it in the time domain. This allows us to compare the secular pattern of temperature cycles with solar and lunar maxima, yielding results that are not obvious from spectral analysis alone.
Using the Hodrick-Prescott Filter to Reveal Oscillations in Globally Averaged Temperature
We use the open source econometric regression software gretl (GNU Regression, Econometrics, and Time Series) [34] to derive an HP filtered time series for the HadCRUT3 Monthly Global Temperature Anomaly, 1850:01 through 2008:11 [35].

Figure 1 is representative output in gretl for a series filtered with HP smoothing (λ of 129,000). In the top panel is the original series (in gray), with the resulting smoothed trend (in red). In the bottom panel is the cyclical component. In econometric analysis, attention usually focuses on the cyclical component. Our focus, though, is on the trend component in the upper panel, and in particular the first differences of the trend component. The first differences of a trend indicate rate of change.
By taking the first differences of the smoothed trend in Figure 1, we obtain the series (in blue) shown in Figure 2, plotted against the background of the original data (gray), and the smoothed trend (red).

What does this reveal? At first glance, we see an alternating pattern of decadal and bidecadal oscillations in the rate of warming, with a curious exception circa 1920-1930. We will return to this later. Concentrating for now on the general pattern, these oscillations in the rate of warming are representations, in the time domain, of spectral frequencies in the temperature data, with high frequency oscillations filtered out by the HP smoothing.
As evidence of this, Figure 3 presents the result of two Morelet continuous wavelet transforms, the first (in the upper panel) of the unfiltered HadCRUT3 monthly time series, and the second (in the lower panel) of results obtained with HP smoothing.
The wavelet transforms below a frequency of ~7 years (26.4 ≈ 84 months) are visually identical; the HP filter is simply acting as a low pass filter, filtering out oscillations with frequencies above ~7 years, while preserving the decadal and bidecadal oscillations of interest here. In the next section, we investigate these oscillations in further detail, supplementing our results from HP filtering with MTM spectrum analysis, and a sinusoidal model fit.
Frequency Analysis
Figure 4 is an MTM spectrum analysis of the unfiltered HadCRUT3 monthly global temperature analysis.

A feature of MTM spectrum analysis is that it distinguishes signals that are described as “harmonic” from those that are merely “quasi-oscillatory.” In MTM spectrum analysis a harmonic is a more clearly repeatable signal that passes a stronger statistical test of its repeatability. Quasi-oscillatory signals are statistically significant, in the sense of rising above the background noise level, but are not as consistently repeating as the harmonic signals.
The distinction between harmonic and quasi-oscillatory signals is well illustrated in Figure 4 by the two cycles that interest us the most – a “quasi-oscillatory” cycle with a peak at 8.98 years, and a “harmonic” signal centered at 21.33 years. Also shown are a harmonic, and a quasi-oscillatory cycle, of shorter frequencies, possibly ENSO related. The harmonic at 21.33 years in Figure 4 encompasses a range from 18.96 to 24.38 years, and the quasi-oscillatory signal that peaks at 8.93 years has sidebands above the 99% significance level that range from 8.53 to 10.04 years. These signals are consistent with spectra identified by Keeling and Whorf [13,14].
Figure 5 is an MTM spectrum analysis of the HP smoothed first differences.

The basic shape of the spectrum is unchanged, but it is now well above the background noise level because of the HP filtering. Attention is drawn in Figure 5 to four oscillatory modes or cycles because they correspond to the four strongest cycles derived from using the PAST (PAleontological STatistics) software [36] to fit a sinusoidal model to the HP smoothed first differences.
Shown in Figure 6, the sinusoidal fit results in periods of 20.68, 9.22, 15.07 and 54.56 years, in that order of significance. These periodicities fall within the ranges of the spectra obtained using MTM spectrum analysis, and yield a sinusoidal model with an R2 of 0.60.

Discussion
The first differences of the HP smoothed temperature series, shown in Figure 2 and Figure 6, show a pattern of alternating decadal and bidecadal oscillations in globally averaged temperature. From the sinusoidal model fit, these cycles have average frequencies of 20.68 and 9.22 years, results that are consistent with the MTM spectrum analysis, and with spectra in the results published by Keeling and Whorf [13, 14]. But to what can we attribute these persistent periodicities?
A bidecadal frequency of 20.68 years is too short to be attributed solely to the double sunspot cycle, and too long to be attributed solely to the 18.6 year lunar nodal cycle. There is indeed evidence of a spectral peak at ~15 years, which Keeling and Whorf combined with their evidence of a 21.7 year cycle to argue for attributing the oscillations entirely to the 18.6 year lunar nodal cycle.
But our evidence indicates that the ~15 year spectrum is much weaker, is not harmonic, and probably derives from the anomalous behavior of the spectra circa 1920-1930, something Keeling and Whorf could not appreciate with evidence only from the frequency domain. Especially in light of the evidence presented below, and because the bidecadal signal is harmonic, and readily discernible in the time domain representation of Figure 2 and Figure 6, we believe that a better attribution is the beat cycle explanation proposed by Bell [16], i.e. a cycle representing the combined influence of the 22 year double sunspot cycle and the 18.6 year lunar nodal cycle.
As for the decadal signal of 9.22 years, this is too short to be likely attributable to the 11 year solar cycle, but is very close to half the 18.6 year lunar nodal cycle, and thus may well be attributable to the lunar nodal cycle. Together, the pattern of alternating weak and strong warming cycles shown in Figure 2 and Figure 6 suggest a complex pattern of interaction between the double sunspot cycle and the lunar nodal cycle.
This complex pattern of interaction between the double sunspot cycle and lunar nodal maxima in relation to the alternating pattern of decadal and bidecadal warming rates is demonstrated further in Figure 6 with indicia plotted to indicate solar and lunar maxima. Since circa 1920, the strong warming rate cycles have tended to correlate with solar maxima associated with odd numbered solar cycles, and the weak warming rate cycles with lunar maxima.
Prior to 1920, the strong warming rate cycles tend to correlate with the lunar nodal cycle, with the weak warming rate cycles associated with even numbered solar cycles. The sinusoidal model fit begins to break down prior to 1870. Whether this is a reflection of the poorer quality of data prior to 1880, or indications of an earlier phase shift, we cannot say, though the timing would be roughly correct for the latter. But the anomalous pattern circa 1920, when viewed against the shift from strong warming rate cycles dominated by the lunar nodal cycle, to strong warming rate cycles dominated by the double sunspot cycle, has the appearance of a disturbance associated with what clearly seems to be a phase shift
These results agree with the evidence mustered by Hoyt and Schatten [28] and Georgieva, Kirov, and Bianchi [29] for a phase shift circa 1920 in the relationship between solar activity and terrestrial temperatures. However, we can suggest, here, that the supposed negative correlation between solar activity and terrestrial temperatures prior to 1920 rests on a misconstrued understanding of the data. As can be seen in Figure 6, the relationship between the change in the warming rate and solar activity is still positive, i.e. the warming rate is peaking near the peaks of solar cycles 10, 12, and 14, but at a much reduced level, indicative of the lower level of solar activity during the period. Indeed, for much of solar cycle 12, and all of solar cycle 14, the “warming” rate is negative, but the change in the warming rate is still following the level of solar activity, becoming less negative as solar activity increases, and more negative as solar activity decreases. Still, there is a strong suggestion in Figure 6 of a phase shift circa 1920 in which the relationship between solar activity and terrestrial temperatures changes dramatically before and after the shift. Before the shift, the lunar period dominates, and the solar period is much weaker. After the shift, the solar period dominates, and the lunar period becomes subordinate.
Speculating
To this point, we believe that we are on relatively solid ground in describing what the data show, and the likelihood of a lunisolar influence on global temperatures on decadal and bidecadal timescales. What follows now is more speculative. To what can we attribute the apparent phase shift circa 1920, evident not just in our findings, but as reported by Hoyt and Schatten [28] and Georgieva, Kirov, and Bianchi [29]? While the period of data is too short to do more than speculate, the periods before and after the phase shift appear to be roughly equivalent in length to the Gleissberg cycle.
Since 1920, we’ve had four double sunspot cycles with strong warming rates ending in odd numbered cycles. Prior to 1920, while the results are less certain at the beginning of the data period, there is a reasonable interpretation of the data in which we see four bidecadal periods dominated by the influence of the lunar cycle. These differences may be attributable to the broad swings in atmospheric “circulation epochs” discussed by Georgeiva, et al. [30], characterized either predominantly by zonal circulation, or meridional circulation. With respect to the period of time shown in Figure 6, zonal circulation prevailed prior to 1920, and since then meridional circulation has dominated. These “circulation epochs” may have persistent influence on the relative roles of solar and lunar influence in warming rate cycles.
While the role of variation in solar irradiation over the length of a solar cycle on the broad secular rise in global temperature is disputed, we are presenting here evidence primarily of a more subtle repeated oscillation in the rate of change in temperature, not its absolute level. As shown in Figure 2 and Figure 6, the rate of change oscillates between bounded positive and negative values (with the exception circa 1920 duly noted). Variations in solar irradiance over the course of the solar cycle are a reasonable candidate for the source of this variation in warming rate cycle. As WUWT’s “resident solar physicist”, Leif Svalgaard, has pointed out, variations in TSI over a normal solar cycle can only account for about 0.07°C of total variation over the course of a solar cycle. The range of change in warming rates shown in Figure 2 and Figure 6 are at most only about one-tenth of this, or about ~0.006°C to ~0.008°C. If anything, we should be curious why the variation is so small. We attribute this to the averaging of regional and hemispheric variations in the globally averaged data. On a regional basis, analysis [not presented here] shows much larger variation, but still within the range of 0.07°C that might plausibly be attributed to the variation in TSI over the course of a solar cycle.
So variations in solar irradiance over the course of the solar cycle are a reasonable candidate for the source of this variation in warming rate cycle. At the same time, the lunar nodal cycle may be further modulating this natural cycle in the rate of change in global temperatures. As to the degree of modulation, that may be influenced by atmospheric circulation patterns. With zonal circulation, the solar influence is moderated and the lunar influence dominates the modulation of the warming rate cycles. With meridional circulation, the solar influence is stronger, and the warming rate cycles are dominated by the solar influence.
At this writing, we are in the transition from solar cycle 23 to 24, a transition that has taken longer than expected, and longer than the transitions typical of solar cycles 16 through 23. Indeed, the transition is more typical of the transitions of solar cycles 10 through 15. If the patterns observed in Figure 6 are not happenstance, we may be seeing an end to the strong solar activity of solar cycles 16-23, and a reversion to the weaker levels of activity associated with solar cycles 10-15. If that occurs, then we should see a breakdown in the correlation between warming rate cycles and solar cycles at bidecadal frequencies, and a reversion to a dominant correlation between temperature oscillations and the lunar nodal cycle.
Interestingly, there was a lunar nodal maximum in 2006 not closely associated with the timing of decadal or bidecadal oscillations in globally averaged temperature. This could be an indication of a breakdown in the pattern similar to what we see in the 1920’s, i.e. the noise associated with a phase shift in the weaker warming rate cycles will occur at times of the solar maximum, and the stronger warming rate cycles will occur at times of lunar nodal maximum.
Repeating, there appear to be parallels between our findings and the argument of Georgieva et al. [29] of a relationship between terrestrial climate and solar hemispheric asymmetry on the scale of a double Gleissberg cycle. Solar cycles 16-23, associated as we have seen with increased solar activity, and strong correlations with the strong terrestrial warming rate cycles of bidecadal frequency, represent 8 solar cycles, a period of time associated with a Gleissberg cycle.
While the existence of Gleissberg length cycles is hardly challenged, their exact length and timing is subject to a debate we will not entertain here at any length. Javariah [37] on the basis of the disputed 179 year cycle of Jose [38] believes that a descending phase of a Gleissberg cycle is already underway, and will end with the end of a double Hale cycle comprising solar cycles 22-25.
While it is true that solar activity, as measured by SSN, is already on the decline, we would include the double Hale cycle 20-23 in the recent peak of solar activity, and not necessarily expect to see the bottom of the current decline in solar activity that quickly.
The issue here can perhaps be framed with respect to Figure 7 below:

Assuming we are on the cusp of a downward trend in solar activity that began circa 1990 according to Javariah, and will decline, say, to a level comparable to the trough seen in the early 1900’s, will it be a sharp decline, like that seen at the beginning of the 19th Century, or a more moderate decline like that seen at the beginning of the 20th Century? A naïve extrapolation might be to replicate the more gradual decline seen during the latter half of the 19th Century, suggesting a gradual decline in solar activity through solar cycle 31, i.e. for most of the 21st Century. And based on the prospect of a phase shift in the pattern of decadal and bidecadal warming rate cycles, the bidecadal cycle would come to be dominated by the influence of the lunar nodal cycle, and the influence of the solar cycle would be diminished, leading at least to a reduction in the rate of global warming, if not an era of global cooling.
This is a prospect worthy of more investigation.
Finally, while we readily concede that multidecadal projections are at best little more than gross speculation, in Figure 6 we have carried the sinusoidal model fit out to 2030, and in Figure 8 we use the sinusoidal model of rate changes to project temperature

anomalies through 2030. Assuming a simple projection of the sinusoidal model of rate changes persists through 2030, there would be little or no significant change in global temperature anomalies for the next two decades.
Looking carefully at the sinusoidal model, what we are seeing projected for 2010-2020 are a return to conditions similar to what the model shows for circa 1850-1860, with the period 1853-2020 representing a complete composite cycle of the four combined periods of oscillation. That is, 1853 is the first point at which the sinusoidal model is crossing the x-axis, and at 2020 the model again crossing the x-axis and beginning to repeat a ~167 year cycle. In terms of solar cycle history, that corresponds to a return to conditions similar to solar cycles 10-15, with another phase shift reversing the phase shift of ~1920. If these broad, long term secular swings in solar activity and global atmospheric conditions and temperature anomalies are not random, but reflect solar-terrestrial dynamics that play out over multidecadal and even centennial time-scales, then the early 21st Century may yield a respite from the global warming of the late 20th Century.
Conclusion
There is substantial and statistically significant evidence for decadal and bidecadal oscillations in globally averaged temperature trends. Sinusoidal model analysis of the first differences of the HP smoothed HadCRUT3 time series reveals strong periodicities at 248.2 and 110.7 months, periodicities confirmed as well with MTM spectrum analysis.
Analyzing these periodicities in the time domain with the first differences of the HP smoothed HadCRUT3 time series reveals a pattern of correlation between strong warming rate cycles and the double sunspot cycle for the past four double sunspot cycles. Prior to that, with a phase shift circa 1920, the strong warming rate cycles were dominated by the timing of the lunar nodal cycle.
We suggest that this reversal may be related to a weaker epoch of solar activity prior to 1920, and that we may on the cusp of another phase shift associated with a resumption of such weakened solar activity.
If so, this may result in a reduction in the rate of global warming, and possibly a period of global cooling, further complicating the effort to attribute recent global warming to anthropogenic sources.
References
[1] Mock, SJ, Hibler III, WD. The 20-Year oscillation in Eastern North American temperature records. Nature. 1976; 261: 484–486.
[2] Mitchell, Jr., JM, Stockton, CW, Meko, DM. Evidence of a 22-year rhythm of drought in the western United States related to the Hale solar cycle since the 17th century. In: McCormac, BM, Seliga, TA, editors. Solar-terrestrial influences on weather and climate. Dordrecht, Holland: Kluwer Acad. Publ; 1979. p.125-143.
[3] Cook, ER, Meko, DM, Stockton, CW. A new assessment of possible solar and lunar forcing of the bidecadal drought rhythm in the western U.S. Journal of Climate. 1997; 10:1343-1356.
[4] Minobe, S. Resonance in bidecadal and pentadecadal climate oscillations over the North Pacific: Role in climate regime shifts. Geophysical Research Letters. 1999; 26(7): 855-858.
[5] Stager, JC. Ryves, D. Cumming, BF. Meeker, LD. Beer J. Solar variability and the levels of Lake Victoria, East Africa, during the last millennium. Journal of Paleolimnology. 2005; 33(2):243-251.
[6] Raspopov, OM. Dergachev, VA. Kolstrom, T. .Periodicity of climate conditions and solar variability derived from dendrochronological and other palaeoclimatic data in high latitudes. Palaeogeography, Palaeoclimatology, Palaeoecology. 2004; 209: 127-139.
[7] Rigozo, NR. Nordeman, DJR. Echer, E. Vieira, LEA. Echer, MPS. Prestes, A. Tree-ring width wavelet and spectral analysis of solar variability and climatic effects on a Chilean cypress during the last two and a half millennia. Climate of the Past Discussions. 2005; 1:121-135.
[8] Folland, CK. Regional-scale interannual variability of climate – a north-west European perspective. Meteorological Mazazine. 1983; 112: 163-183.
[9] Newell, NE. Newell, RE. Hsiung, H. and Zhongxiang, W. Global marine temperature variation and the solar magnetic cycle. Geophysical Research Letters. 1989; 16(4): 311–314.
[10] Brunetti, M. Maugeri, M. Nanni, T. Study of the solar signal in mean Central Europe temperature series from 1760 to 1998. Il Nuovo Cimento C. 2003; 26(3): 287-295.
[11] Ghil, M. Vautard, R. Interdecadal oscillations and the warming trend in global temperature time series. Nature. 1991; 350: 324-327.
[12] Eisner, JB. Tsonis, AA. Do bidecadal oscillations exist in the global record? Nature. 1991; 353: 551-553
[13] Keeling CD. Whorf TP. Decadal oscillations in global temperature and atmospheric carbon dioxide. In: Natural climate variability on decade-to-century time scales. Climate Research Committee, National Research Council. Washington, DC: The National Academies; 1996; pp. 97-110.
[14] Keeling CD. Whorf TP. Possible forcing of global temperature by the oceanic tides. Proceedings of the National Academy of Sciences. 1997; 94(16):8321-8328.
[15] Currie, RG. Luni-solar 18.6- and solar cycle 10-11-year signals in USA air temperature records. International Journal of Climatology. 1993; 13(1): 31-50.
[16] Bell, PR. The combined solar and tidal influence on climate. In: Sofia, SS, editor. Variations of the Solar Constant. Washington, DC: National Aeronautics and Space Administration, 1981; p. 241–256..
[17] Bell, PR. Predominant periods in the time series of drought area index for the western high plains AD 1700 to 1962. In: Sofia, SS, editor. Variations of the Solar Constant. Washington, DC: National Aeronautics and Space Administration; 1981; p. 257–264.
[18] Stockton, CW. Mitchell Jr., JM. Meko, DM. 1983: A reappraisal of the 22-year drought cycle. In: McCormac, BM., editor. Solar-Terrestrial Influences on Weather and Climate. Boulder, CO: Colorado Associated University Press; 1983, p. 507–515.
[19] Cerveny, RS. Shaffer, JA. The Moon and El Nino. Geophysical Research Letters. 2001; 28(1): 25-28.
[20] Treloar, NC. Luni-solar tidal influences on climate variability. International Journal of Climatology. 22(12): 2002; 1527-1542.
[21] Yndestad, H. The Arctic Ocean as a coupled oscillating system to the forced 18.6 year lunar gravity cycle. In: Tsonis, AA, Elsner, JB, editors. Nonlinear Dynamics in Geosciences. New York, Springer: 2007; p. 281-290.
[22] Yndestad, H. The influence of the lunar nodal cycle on Arctic climate. ICES Journal of Marine Science. 2006; 63(3): 401-420.
[23] McKinnell, SM. Crawford, WR. The 18.6-year lunar nodal cycle and surface temperature variability in the northeast Pacific. Journal of Geophysical Research. 2007; 112, C02002, doi:10.1029/2006JC003671
[24] Kasatkina, EA. Shumilov, OI. Krapiec, M. On periodicities in long term climatic variations near 68° N, 30° E. Advances in Geosciences. 2007; 13: 25-29.
[25] Yimin, Z. Xiuqun, Y. Joint propagating patterns of SST and SLP anomalies in the North Pacific on bidecadal and pentadecadal timescales. Advances in Atmospheric Sciences. 2003; 694-710.
[26] W. H. Berger, WH. von Rad, U. Decadal to millennial cyclicity in varves and turbidites from the Arabian Sea: hypothesis of tidal origin. Global and Planetary Change. 2002; 34: 313-325.
[27] Zhao, J. Han, Y.-B. Li, Z.-A. The Effect of Solar Activity on the Annual Precipitation in the Beijing Area. Chinese Journal of. Astronomy and. Astrophysics. 2004; 4: 189–197.
[28] Hoyt DV, Schatten, KH. The Role of the Sun in Climate Change. New York: Oxford Univ. Press; 1997.
[29] Georgieva, K. Kirov, B. Bianchi, C. Long-term variations in the correlation between solar activity and climate. Memorie della Società Astronomica Italiana (Journal of the Italian Astronomical Society). 2005; 76(4): 965-968.
[30] Georgieva, K. Kirov, B. Tonev, P. Guineva, V. Atanasov, D. Long-term variations in the correlation between NAO and solar activity: The importance of north–south solar activity asymmetry for atmospheric circulation. Advances in Space Research. 2007; 40(7): 1152-1166.
[31] Georgieva, K. Solar dynamics and solar-terrestrial Influences. In: Maravell, N. ed. Space Science: New Research. New York: Nova Science Publishers. 2006; p. 35-84.
[32] Hodrick, R. Prescott, E. Postwar US business cycles: an empirical investigation. Journal of Money, Credit and Banking. 1997. 29(1): 1-16. Reprint of University of Minneapolis discussion paper 451, 1981
[33] Maravall, A. del Río, A. Time aggregation and the Hodrick-Prescott filter. Banco de España Working Papers 0108, Banco de España. 2001. Available: http://www.bde.es/informes/be/docs/dt0108e.pdf[34] Cottrell, A., Lucchetti, R. Gretl User’s Guide. 2007. Available: http://ricardo.ecn.wfu.edu/pub//gretl/manual/en/gretl-guide.pdf
[35] Brohan, P. Kennedy, J. Harris, I. Tett, S. Jones, P. Uncertainty estimates in regional and global observed temperature changes: a new dataset from 1860. Journal of Geophysical Research. 2006; 111: D12106, doi:10.1029/2005JD006548. Data retrieved at: http://hadobs.metoffice.com/hadcrut3/diagnostics/
[36] Hammer, Ø. Harper, D. Ryan, P. PAST: Paleontological Statistics Software Package for Education and Data Analysis. Palaeontologia Electronica. 2001; 4(1): 9pp. http://palaeo-electronica.org/2001_1/past/issue1_01.htm
[37] Javariah, J. Sun’s retrograde motion and violation of even-odd cycle rule in sunspot activity. 2005; 362(4): 1311-1318.
[38] Jose, P. Sun’s motion and sunspots. Astronics Journal. 1965; 70: 193-200.


Leif Svalgaard (20:27:34) :
Re “the mechanism I push.”
You say: “The closest I can get is that direct heating of the minute amount of ozone by the minute amount of UV that survives the path in the stratosphere has something to do with it, but it is not clear how you envision that to work ans the energy involved is so minute. Another, unrelated it seems, part of your ‘mechanism’ is the ‘compaction’ of the atmosphere by the solar wind, something that I think does not happen [after having studied the subject for 40 years].”
No, I don’t think you are at all up to date. It was your suggestion that it could be the flux in ozone that is responsible and I agree and thank you for the suggesttion. See: erlhapp (20:28:36) :
Can we get back to your statement that:
“That the temperature variations in the upper troposphere are larger than at the surface is a result of conventional atmospheric physics.”
My counter statement is that: ” the temperature variations in the upper troposphere are larger than at the surface is a result of change in ozone content on QBO time scales due to a slackening of the Brewer Dobson convection that alters the flow of ozone between the upper and lower stratosphere.”
Then let us focus on the acknowledged relationship between strength of radiation and geomagnetic activity on the one hand and stratospheric ozone levels on the other. We can skip the gravity wave hypothesis as irrelevant.
Or will you push the proposition that all temperature variation in the stratosphere is the result of phenomena originating in the troposphere. Let’s be very plain about what we are saying.
erlhapp (20:57:21) :
No, I don’t think you are at all up to date. It was your suggestion that it could be the flux in ozone that is responsible and I agree and thank you for the suggesttion. See: erlhapp (20:28:36) :
I don’t think so, and if you have misinterpreted [seized on] a clumsy statement of mine, that is for you. It is not my view.
My counter statement is that: ” the temperature variations in the upper troposphere are larger than at the surface is a result of change in ozone content on QBO time scales due to a slackening of the Brewer Dobson convection that alters the flow of ozone between the upper and lower stratosphere.”
This is a blanket statement with no compelling evidence, but with enough buzzwords to bamboozle the unwary.
Then let us focus on the acknowledged relationship between strength of radiation and geomagnetic activity on the one hand and stratospheric ozone levels on the other.
This we have gone over so many times that there is no need to do it again, especially since is not relevant for the issue at hand. But in a different thread and context we can take that up [again].
We can skip the gravity wave hypothesis as irrelevant.
I don’t think we should. The very latest and best analysis of the waves is this [soon to be published] paper http://www.atmos-chem-phys-discuss.net/9/5623/2009/acpd-9-5623-2009-print.pdf . I quote from the introduction:
“It is widely accepted that the phase descent of alternating tropical easterlies and westerlies is driven by atmospheric waves of both global scale (equatorial wave modes like Kelvin, equatorial Rossby, Rossby-gravity, or inertia-gravity waves), as well as mesoscale gravity waves.”
Let’s be very plain about what we are saying.
That would help, but more than just ‘plain’, ‘correct and concise’ would be even better.
Leif Svalgaard (20:45:13) :
My apologies. Here is the quote from Climate Audit at http://www.climateaudit.org/?p=2534 where you explained the effect.
The influence of the psi-angle gives rise to a semiannual variation with minima near the solstices when the solar wind sees the strongest geomagnetic field. Figure [2.5] shows the variation of the am-index [left] and then of the so-called Svalgaard-function S(psi) = [1 + 3 (cos(psi))^2]^(-2/3) as functions of Universal Time [UT] and time of year [the month]. When we try to extract solar conditions from geomagnetic variations, we need to remove the effect of this purely terrestrial effect. In addition to the Svalgaard-function modulation there are other [generally smaller] effects [to be discussed later] that give rise to semiannual variations. In fact, these variations were discovered ~150 years ago, and we are still [heatedly] debating what causes them, and not everybody agrees with the above.
Heated debate. It’s with us still.
Leif
Sidestep if you will but the question remains:
“That the temperature variations in the upper troposphere are larger than at the surface is a result of conventional atmospheric physics.”
This assertion needs explanation.
Lets note:
1. The variation is on the QBO time scale.
2. These variations are amplified 2-3 times in parallel with sea surface temperature.
3. The extent of amplification increases between 300hpa and the tropopause.
4. The amplification appears to be greatest where relatively stationary high pressure cells exist.
5. In general, sea surface temperature and 200hPa temperature begins to rise at the point where 20hPa temperature over the equator starts to fall.
REPLY: Erl, Leif. Let’s give it a rest for a few days. – Anthony
erlhapp (22:20:18) :
Sidestep if you will but the question remains:
“That the temperature variations in the upper troposphere are larger than at the surface is a result of conventional atmospheric physics.”
It is not side stepping, the question was mooted by showing that the transfer of energy is upwards by waves, but if I must rub it in:
http://arxiv.org/ftp/physics/papers/0407/0407074.pdf
“all state-of-the-art general circulation models predict a positive temperature trend that is greater for the troposphere than the surface. This predicted positive trend increases in value with altitude until it reaches a maximum ratio with respect to the surface of as much as 1.5 to 2.0 at about 200-400 hPa”
erlhapp (22:20:18) :
Sidestep if you will but the question remains:
“That the temperature variations in the upper troposphere are larger than at the surface is a result of conventional atmospheric physics.”
And more on waves creating this difference:
GEOPHYSICAL RESEARCH LETTERS, VOL. 34, L03702, doi:10.1029/2006GL027918, 2007
Tropical tropopause climatology as observed with radio occultation measurements from CHAMP compared to ECMWF and NCEP analyses
M. Borsche, G. Kirchengast, and U. Foelsche1,
[6] Temperature variability found in RO data in the tropics in the height range 10 km to 25 km including the tropopause region, can be associated with equatorial planetary waves and internal gravity waves. Randel and Wu [2005] and Tsai et al. [2004] have investigated equatorial Kelvin waves with CHAMP and SAC-C RO data and found typical characteristics such as the eastward phase tilt and typical wavelengths and amplitudes. It was found that in
general temperature fluctuations due to Kelvin waves amount to about ±2 K in the tropopause region [Tsai et al., 2004] but for single events they can reach up to more than ±10 K [Randel and Wu, 2005].
This is not a big problem that ‘needs explanation’, and your particular ‘explanation’ is not energetically viable. To show that your mechanism is viable, you have to present a detailed calculation of energy flux and latent heat balance, etc, and show that your particular mechanism does indeed supply the energy where it is need and when it is needed, and then, to boot, show where all the other mechanisms go wrong.
Re: oms (19:55:49) & (19:56:37)
Ok – I think I know the convention of which you are speaking. So, for example, the harmonic mean of 18.6a & 22.2a is 20.24117647a and if a wave with that period was being modulated by a wave with a period of 229.4a, then 18.6a would be the positive sideband and 22.2a would be the negative sideband. The symmetry is only seen with frequencies (not with periods). In this example: 0.049404243/a +- 0.004359198/a. Am I talking your language now? [Note: a = annum.]
Re: Pamela Gray (18:47:34)
Nice example – but rethink whether the sun plays a role in Earth days & years.
Leif,
The waves you speak of have a frequency that is reckoned in days whereas the QBO has on average frequency since 1948 of 27.1 months.
The GCM’s do predict an increase in upper troposphere temperature on a scale of decades. The lack of evidence of this particular one way warming phenomenon is reckoned to be strong evidence that the GCM’s are faulty. The paper you cite is irrelevant to a discussion of why atmospheric and sea surface temperature varies on the QBO timescale.
Between 1948 and 1980 stratospheric temperature rose strongly, most particularly in the southern hemisphere and since that time it has fallen steadily. As it has done so, surface pressure off Argentina has gradually risen weakening the tendency for the trades to periodically falter. The ‘bucket’ to use Pamela’s terminology, is changing shape on a time scale much longer than the QBO and certainly the time scale of wave activity.
Anthony, I will respect your wishes. I ban myself from further contribution for three days.
I suppose you know the work of Silvie Duhau? I ran a quick search on your site and got no hits so at risk of teaching grandma to suck eggs
http://adsabs.harvard.edu/abs/2003SoPh..213..203D
If you follow that link through the author name and then through the next page through the author query link you will find a list of Duhau’s publications
You may find something that tickles your fancy!
jh
Has anyone ever investigated the effect the other planets may have on the earth’s weather? Jupiter orbits the sun in about 11.9 years – pretty close to the 11 year sunspot cycle. Saturn orbits every 29.5 years. Mars every 687 days.
Just a thought…
erlhapp (01:38:21) :
The waves you speak of have a frequency that is reckoned in days whereas the QBO has on average frequency since 1948 of 27.1 months.
The paper you cite is irrelevant to a discussion of why atmospheric and sea surface temperature varies on the QBO timescale.
The paper says:
Abstract
The quasi-biennial oscillation (QBO) of the zonal mean zonal wind is one of the most important processes in the dynamics of the middle atmosphere in the tropics. Influences of the QBO can even be found at mid and high latitudes. It is widely accepted that the phase descent of alternating tropical easterlies and westerlies is driven by atmospheric waves of both global scale (equatorial wave modes like Kelvin, equatorial Rossby, Rossby-gravity, or inertia-gravity waves), as well as mesoscale gravity waves.
—–
If we ignore this and chase straw men, no progress can be made. And I agree with Anthony that trying to hijack this thread is not fruitful.
Further to an earlier post here is a better link to the pubs of some interesting solar phycisits and their testable predictions of future climate change
http://www.cdejager.com/Sun-earth%20publications/
and apologies if I am wasting everyones time with stuff they already know
jh
Paul Vaughan (23:34:08) :
Paul, thanks for your reply. I was not being clear. My question was about the origin of the positive-negative/axial-beat terminology.
And adding to the confusion, the beat frequency would have a period of 229.4a/2 = 114.7a.
As far as this paper is concerned, it’s also important to be clear about what is modulating what (no matter what the convention). If 18.6a and 22.2a waves are beating in the sense of the tides (linear superposition) then you will observe the 22.24a harmonic mean modulated by the beat cycle, but spectral analysis should reveal the two distinct peaks. If you have the two waves modulating each other through some sort of nonlinear coupling, then you can have the sum and difference frequencies and all products thereof.
So, without a clear mechanism in mind, it’s easy to get lost in a forest of lines (so to speak).
Evidence of a Lunisolar Influence on Decadal and Bidecadal Oscillations In Globally Averaged Temperature Trends
Basil Copeland and Anthony Watts
and
Leif Svalgaard (21:20:49) :
‘Enhanced wavelet analysis of solar magnetic activity with comparison to global temperature and the Central England Temperature record’
Robert W. Johnson
Abstract:
“The continuous wavelet transform may be enhanced by deconvolution with the wavelet response function. After correcting for the cone of influence, the power spectral density of the solar magnetic record as given by the derectified yearly sunspot number is calculated, revealing a spectrum of odd harmonics of the fundamental Hale cycle, and the integrated instant power is compared to a reconstruction of global temperature in a normalized scatterplot displaying a positive correlation after the turn of the twentieth century. Comparison of the spectrum with that obtained from the Central England Temperature record suggests that some features are shared while others are not, and the scatterplot again indicates a possible correlation.”
I recruited the help of a highly esteemed statistician on some of the research reports I prepared, for obvious reasons. To quote him:
Statistics are analogous to obese people with beautiful facial features skinny-dipping up to their necks. If you obscure most of the unwanted data, what’s left looks great.
You obviously put a lot of work into this. It looks great! I sincerely hope it works out.
Tim Clark (13:34:20) :
I recruited the help of a highly esteemed statistician: “it looks great! I sincerely hope it works out.”
seems a very non-committal comment with little substance…
Svalgaard (07:02:18) :
The paper you cite in Leif Svalgaard (22:43:15) in relation to “That the temperature variations in the upper troposphere are larger than at the surface is a result of conventional atmospheric physics.” and also “why atmospheric and sea surface temperature varies on the QBO timescale” .
David H. Douglass1*, Benjamin D. Pearson1 and S. Fred Singer2 1. Dept of Physics and Astronomy, University of Rochester, Rochester, NY 14627 2. Science & Environmental Policy Project and University of Virginia, Charlottesville, VA 22903
Abstract
As a consequence of greenhouse forcing, all state-of-the-art general circulation models predict a positive temperature trend that is greater for the troposphere than the surface. This predicted positive trend increases in value with altitude until it reaches a maximum ratio with respect to the surface of as much as 1.5 to 2.0 at about 200-400 hPa. However, the temperature trends from several independent observational data sets show decreasing as well as mostly negative values. This disparity indicates that the three models examined here fail to account for the effects of greenhouse forcings.
Trigonometric identities readily show that if two sine-waves of unit amplitude but different angular frequencies are added together, the result can be expressed as 2cos(Bt/2)sin(At/2), where B is the difference frequency and A is sum frequency. The envelope beat frequency is B/2. The line spectrum, however, consists only of the two original frequencies, without any sidebands. This is what applies to “oms” example of M2 and S2 tidal components.
Far more intriguing than the question of beats is the supposed interaction between the lunar node cycle and the Hale cycle. The former is strictly periodic, whereas the latter is not. No doubt both cycles exist, but is that what decidedly nonperiodic temperature records really show? There’s no evidence presented here in MTM spectra that shows the periodic 18.6 lunar cycle, which should really stand out in any “harmonic” analysis. One sees only the 21.33yr spectral peak. Given the limited frequency even of MTM analysis, that’s close enough to the nonperiodic Hale cycle to suggest a possible connection. But, more than a just a similarity of period is required to demonstrate that connection, which might be in the form of period-doubling characteristic of some nonlinear system response to solar sunspot cycle. That seems a more promising avenue of investigation than trying to connect it to the lunar nodes.
erlhapp (17:41:39) :
This disparity indicates that the three models examined here fail to account for the effects of greenhouse forcings.
The models are not really good at all time scales and the data seems to show that on the time scale of long-term global warming they don’t do too well [no surprise]. The main point is that it is not surprising that there should be a larger variation at altitude than at the surface. Even on very general physical grounds one would expect that the effect of almost anything would increase in amplitude when the density decreases [crack a whip to see which end of the whip moves fastest]. Another point is that your mechanism is not unique in the sense that it is the only one that can provide a semblance of explanation. And finally, your basic premise is ‘backwards’: it is not the QBO that is the cause of the variations at the surface, but the variations at the surface that are the cause of the QBO as Plum figured out so long ago. The main criticism of your hypothesis is that it is not energetically viable. You have to show by physical calculation that the energy received and absorbed is sufficient to produce the variations seen. It is the proposer of a mechanism that has that burden, not the opposer having the burden of showing that it doesn’t work.
GEOPHYSICAL RESEARCH LETTERS, VOL. 34, L03702, doi:10.1029/2006GL027918, 2007
Tropical tropopause climatology as observed with radio occultation measurements from CHAMP compared to ECMWF and NCEP analyses
M. Borsche, G. Kirchengast, and U. Foelsche
find that
“Temperature variability found in RO data in the tropics in the height range 10 km to 25 km including the tropopause region, can be associated with equatorial planetary waves and internal gravity waves”
It is not useful just to pile up papers that aren’t read anyway. We have been down that road before. We have tried to focus on a very narrow issue to find out what the deal is about that one, and invariably it ends up with a scatter shot of unrelated [‘yeah, but how about this one, then…”] items and the focus is lost.
But since we down that road, let me repeat “It has been shown by Lindzen and Holton (1968) that the QBO is a wave driven circulation with waves of eastward as well as westward phase velocity playing an important role. After the theory for global scale wave modes developed by Matsuno (1966) had been confirmed by the observations of Wallace and Kousky (1968) for equatorial Kelvin waves and Yanai and Maruyama (1966) for Rossby-gravity waves, in a later work Holton and Lindzen (1972) demonstrated that the forcing by those global scale equatorial waves modes would be sufficient for driving the QBO and could fully explain the observations” [M. Ern and P. Preusse, 2009].
Upwards travelling waves are it! both from theory and from observations. This fact has to taken as the starting point for any serious investigation. If not, we are playing games.
Leif Svalgaard (19:02:36) :
I relish this more conversational tone. What I write in this post should not be seen as a demand for answers or explanations. It is intended to shed some light on the source of what may appear to you to be obstinate and objectionable behaviour on my part.
The morphology of the historical change in temperature in the stratosphere between the poles and the equator tells a story. The amplitude of the variation is much greater at the pole and it is in sync with tropical sea surface temperature change. Temperature change at the pole exhibits variations within the cyclical swing (not seen at the equator), the variation is greater at the southern pole than the northern despite the notion that landforms (N. Hemisphere) are responsible for high latitude wave generation, the extent of the warming during a sudden stratospheric warming is such that wave breaking can not supply the energy for the warming that is observed. The entire winter hemisphere stratosphere actually warms during a sudden stratospheric warming. The amplitude of the temperature variation diminishes from pole to within 10° of the equator and as it does so a gradual and incremental smoothing of the variations occurs. All this indicates to me at least that the energy comes from the poles and the wave is progressively dampened and dissipated as the equator is approached.
Add to this the observation that warming at the pole is accompanied by cooling at the upper limits of the stratosphere over the equator and where are we? The change at the equator is a top down phenomenon and its reach is dependent upon the amplitude of change at the pole.
Indeed, the notion that temperature variation in the stratosphere is wholly driven by planetary scale waves arising in the troposphere is, in my view, insupportable. Until the Pope delivers an encyclical on the matter I will speak freely. In truth, not even the Pope would stop me.
I will concede that the temperature variation between 10°N and 10°S is a product of the interaction between the force applied at the pole and the atmosphere itself, including planetary waves, and it may be these that are responsible for the observed amplification at these latitudes. But the timing and the impetus originates at the pole on the the QBO time scale.
The issues are: What is the force (forces) that drives the polar vortex? How is it that vortex temperature can change so much over thirty year and longer time scales? Can that type of change be internally generated? Why does the vortex change on the QBO timescale? Why are summer temperatures falling in Antarctica as winter temperatures rise? Why is vortex change accompanied by a change in surface pressure, especially in the eastern Pacific off Chile? What governs change in the level of stratospheric ozone? How much of the observed change in temperature in the stratosphere is the result of change in ozone concentration? Why does part of the tropical troposphere present a mirror image of temperature change in the stratosphere? Which part? When?
The Arctic Oscillation is a product of vortex dynamics and recognized as such. This Oscillation changes European climate.
The concern at the end of the day is the timing and direction of change of sea surface temperature in the tropics and implications of change in the tropics for temperature change at high latitudes (global temperature if you like). The issue as to whether the QBO is internally or externally driven is at the heart of the matter of the cause of “naturally driven climate change”.
The paper from Douglas et al shows that the conventional wisdom, as embodied in the GCM,s does not cut the mustard. It’s back to the drawing board for the IPCC, (or should be). The issue of how change in the stratosphere affects the troposphere, cloud cover and sea surface temperature is the gorilla in the room.
The relation to this thread is that the 27.1 month variation in the QBO is precisely half the 4.5 year cycle that turns up in the statistical analysis. SST varies increases each 27.1 months on average and about half of the instances reach El Nino magnitude.
At the risk of embroiling myself in an interminable debate, the idea of heat transport by gravity waves of any kind seems far fetched. Such waves may account for most of the variability of temperatures near the tropopause, but they scarcely provide an explanation of temperature levels and secular changes thereof. After all, gravity wave motion is simply a coherent oscillation of the medium and mass transport by radiation stress is a weak second-order effect that becomes significant only during wave breaking. The appeal to density arguments–the lesser the density, the greater the effect– simply does not apply to heat transport. Certainly the strongest temperature cycle at the tropical surface, where most of the thermalization of solar radiation takes place, is the diurnal cycle. That cycle gets gradually extinguished as density decreases with height above the surface, becoming barely detectable in the stratosphere.
Re: erlhapp (05:16:00)
Where can I find daily-resolution arctic oscillation index data [going back in time as far as possible]?
Re: John S.
Thank you for all of your valuable comments.
Paul Vaughan (11:44:01) :
Can’t help with that request but thought I would throw in an authoritative meteorologists view of the AO. This is from:
R. W. Higgins, A. Leetmaa, and V. E. Kousky. Relationships between Climate Variability and Winter Temperature Extremes in the United States
available at: http://ams.allenpress.com/perlserv/?request=get-document&doi=10.1175%2F1520-0442(2002)015%3C1555%3ARBCVAW%3E2.0.CO%3B2
” The dominant mode of variability in the Northern Hemisphere (NH) extratropics is the AO, which Thompson and Wallace (1998, 2000) have shown to be the primary mode of wintertime variability on timescales ranging from intraseasonal to interdecadal. The AO incorporates many of the features of the associated, more localized NAO (e.g., Walker and Bliss 1932; van Loon and Rogers 1978; Hurrell 1995) but its larger horizontal scale and higher degree of zonal symmetry render it more like a surface signature of the polar vortex aloft. The NAO may be viewed as the regional expression of the AO in the Atlantic sector (Wallace 2000). Thompson and Wallace (1998) showed that the AO accounts for a substantially larger fraction of the variance of NH surface air temperature than the NAO.
The AO is marked by opposing fluctuations in barometric pressure over the polar cap region and the midlatitudes (Fig. 3 ), together with opposing fluctuations in the strength of the westerlies at subpolar and subtropical latitudes (Thompson and Wallace 1998, 2000). It has far reaching effects on winter weather over the United States, Europe, and Asia, and it appears to amplify with height from the troposphere into the lower stratosphere (Thompson and Wallace 2000). Over the past 30 years it has exhibited a pronounced trend (Thompson and Wallace 1998) that has favored milder winters over Europe, Siberia, eastern Asia, and the contiguous United States. At present there is not a consensus in the climate community on whether this trend is a forced response (e.g., to changes in the radiative forcing) and/or natural variability. ”
The construction of the index seems to require some mathematical facility. What about going back to first principles and compare 30hPa temperature at 90-80°N with that over the equator. Or perhaps surface pressure in the same locations.
But bear in mind that the arctic vortex is only active in NH winter and the dynamics of the northern hemisphere is very much complicated by the presence of large land masses. The centers of downdraft activity are multiple. For much of the time the vortex does not reach the surface in the Arctic.
Even better, to capture the variability across both hemispheres add the data for the NH to the SH.
It appears to me that meteorology is a pattern recognition exercise that could be improved if there were a better understanding of the basic dynamics of the climate system. At the moment nothing is hampering progress more than the requirement to imagine that all sorts of change is a response to greenhouse gas forcing of atmospheric temperature. Witness the observation that completes the quote above.
How important is the southern hemisphere in generating weather and climate change? As a matter of interest we have a warming happening over Antarctica http://www.cpc.ncep.noaa.gov/products/stratosphere/temperature/01mb6590.gif
and change in 200hPa geopotential height showing the location of the warming areas at: http://www.cpc.noaa.gov/products/intraseasonal/z200anim.shtml
with a spike in the SOI showing the change of surface pressure relationship between Tahiti and Darwin at: http://www.eldersweather.com.au/climimage.jsp?i=soi
Paul Vaughn:
I’m grateful that somebody found my hastily written comments comprehensible, let alone useful. In my 18:35:48 post, the critical concept of frequency RESOLUTION in relation to MTM analysis was never fully transmitted from my mind to the keyboard. Glad to see that your error-correcting codes are working well on the noisy channel of my typing skills.