Cross Posted from Climate Audit
by Ryan N. Maue, Florida State University COAPS
Figure: Global 24-month running sum time-series of Accumulated Cyclone Energy updated through March 12, 2009.
Very important: global hurricane activity includes the 80-90 tropical cyclones that develop around the world during a given calendar year, including the 12-15 that occur in the North Atlantic (Gulf of Mexico and Caribbean included). The heightened activity in the North Atlantic since 1995 is included in the data used to create this figure.
As previously reported here and here at Climate Audit, and chronicled at my Florida State Global Hurricane Update page, both Northern Hemisphere and overall Global hurricane activity has continued to sink to levels not seen since the 1970s. Even more astounding, when the Southern Hemisphere hurricane data is analyzed to create a global value, we see that Global Hurricane Energy has sunk to 30-year lows, at the least. Since hurricane intensity and detection data is problematic as one goes back in time, when reporting and observing practices were different than today, it is possible that we underestimated global hurricane energy during the 1970s. See notes at bottom to avoid terminology discombobulation.
Using a well-accepted metric called the Accumulated Cyclone Energy index or ACE for short (Bell and Chelliah 2006), which has been used by Klotzbach (2006) and Emanuel (2005) (PDI is analogous to ACE), and most recently by myself in Maue (2009), simple analysis shows that 24-month running sums of global ACE or hurricane energy have plummeted to levels not seen in 30 years. Why use 24-month running sums instead of simply yearly values? Since a primary driver of the Earth’s climate from year to year is the El Nino Southern Oscillation (ENSO) acts on time scales on the order of 2-7 years, and the fact that the bulk of the Southern Hemisphere hurricane season occurs from October – March, a reasonable interpretation of global hurricane activity requires a better metric than simply calendar year totals. The 24-month running sums is analogous to the idea of “what have you done for me lately”.
During the past 6 months, extending back to October of 2008 when the Southern Hemisphere tropical season was gearing up, global ACE had crashed due to two consecutive years of well-below average Northern Hemisphere hurricane activity. To avoid confusion, I am not specifically addressing the North Atlantic, which was above normal in 2008 (in terms of ACE), but the hemisphere (and or globe) as a whole. The North Atlantic only represents a 1/10 to 1/8 of global hurricane energy output on average but deservedly so demands disproportionate media attention due to the devastating societal impacts of recent major hurricane landfalls.
Why the record low ACE?
During the past 2 years +, the Earth’s climate has cooled under the effects of a dramatic La Nina episode. The Pacific Ocean basin typically sees much weaker hurricanes that indeed have shorter lifecycles and therefore — less ACE . Conversely, due to well-researched upper-atmospheric flow (e.g. vertical shear) configurations favorable to Atlantic hurricane development and intensification, La Nina falls tend to favor very active seasons in the Atlantic (word of warning for 2009). This offsetting relationship, high in the Atlantic and low in the Pacific, is a topic of discussion in my GRL paper, which will be a separate topic in a future posting. Thus, the Western North Pacific (typhoons) tropical activity was well below normal in 2007 and 2008 (see table). Same for the Eastern North Pacific. The Southern Hemisphere, which includes the southern Indian Ocean from the coast of Mozambique across Madagascar to the coast of Australia, into the South Pacific and Coral Sea, saw below normal activity as well in 2008. Through March 12, 2009, the Southern Hemisphere ACE is about half of what’s expected in a normal year, with a multitude of very weak, short-lived hurricanes. All of these numbers tell a very simple story: just as there are active periods of hurricane activity around the globe, there are inactive periods, and we are currently experiencing one of the most impressive inactive periods, now for almost 3 years.
Bottom Line
Under global warming scenarios, hurricane intensity is expected to increase (on the order of a few percent), but MANY questions remain as to how much, where, and when. This science is very far from settled. Indeed, Al Gore has dropped the related slide in his PowerPoint (btw, is he addicted to the Teleprompter as well?) Many papers have suggested that these changes are already occurring especially in the strongest of hurricanes, e.g. this and that and here, due to warming sea-surface temperatures (the methodology and data issues with each of these papers has been discussed here at CA, and will be even more in the coming months). The notion that the overall global hurricane energy or ACE has collapsed does not contradict the above papers but provides an additional, perhaps less publicized piece of the puzzle. Indeed, the very strong interannual variability of global hurricane ACE (energy) highly correlated to ENSO, suggests that the role of tropical cyclones in climate is modulated very strongly by the big movers and shakers in large-scale, global climate. The perceptible (and perhaps measurable) impact of global warming on hurricanes in today’s climate is arguably a pittance compared to the reorganization and modulation of hurricane formation locations and preferred tracks/intensification corridors dominated by ENSO (and other natural climate factors). Moreover, our understanding of the complicated role of hurricanes with and role in climate is nebulous to be charitable. We must increase our understanding of the current climate’s hurricane activity.
Background:
During the summer and fall of 2007, as the Atlantic hurricane season failed to live up to the hyperbolic prognostications of the seasonal hurricane forecasters, I noticed that the rest of the Northern Hemisphere hurricane basins, which include the Western/Central/Eastern Pacific and Northern Indian Oceans, was on pace to produce the lowest Accumulated Cyclone Energy or ACE since 1977. ACE is the convolution or combination of a storm’s intensity and longevity. Put simply, a long-lived very powerful Category 3 hurricane may have more than 100 times the ACE of a weaker tropical storm that lasts for less than a day. Over a season or calendar year, all individual storm ACE is added up to produce the overall seasonal or yearly ACE. Detailed tables of previous monthly and yearly ACE are on my Florida State website.
Previous Basin Activity: Hurricane ACE
| BASIN | 2005 ACE | 2006 ACE | 2007 ACE | 2008 ACE | 1982-2008 AVERAGE |
| Northern Hemisphere | 655 | 576 | 383 | 408 | 557 |
| North Atlantic | 243 | 83 | 72 | 142 | 104 |
| Western Pacific | 301 | 274 | 212 | 167 | 280 |
| Eastern Pacific | 97 | 204 | 55 | 83 | 156 |
| Southern Hemisphere* | 285 | 182 | 191 | 164 | 229 |
* Southern Hemisphere peak TC activity occurs between October and April. Thus, 2008 values represent the period October 2007 – April 2008.
The table does not include the Northern Indian Ocean, which can be deduced as the portion of the Northern Hemisphere total not included in the three major basins. Nevertheless, 2007 saw the lowest ACE since 1977. 2008 continued the dramatic downturn in hurricane energy or ACE. The following stacked bar chart demonstrates the highly variable, from year-to-year behavior of Northern Hemisphere (NH) ACE. The smaller inset line graph plots the raw data and trend (or lack thereof). Thus, during the past 60 years, with the data at hand, Northern Hemisphere ACE undergoes significant interannual variability but exhibits no significant statistical trend.
So what to expect in 2009? Well, the last Northern Hemisphere storm was Typhoon Dolphin in middle December of 2008, and no ACE has been recorded so far. The Southern Hemisphere is below normal by just about any definition of storm activity (unless you have access to the Elias sports bureau statistic creativity department), and the season is quickly running out. With La Nina-like conditions in the Pacific, a persistence forecast of below average global cyclone activity seems like a very good bet. Now if only the Dow Jones index didn’t correlate so well with the Global ACE lately…
Notes:
Hurricane is the term for Tropical Cyclone specific to the North Atlantic, Gulf of Mexico, Caribbean Sea, and the Pacific Ocean from Hawaii eastward to the Mexican coast. Other names around the world include Typhoon, Cyclone, and Willy-Willy (Oz) but hurricane is used generically to avoid confusion.
Accumulated Cyclone Energy or ACE:

is easily calculated from best-track hurricane datasets, with the one-minute maximum sustained wind squared and summed during the tropical lifecycle of a tropical storm or hurricane.
Discover more from Watts Up With That?
Subscribe to get the latest posts sent to your email.


Bill Illis and Matt v.- You beat me to the punch. I was waiting for the appropriate topic to point out PDO and AMO both negative, etc., as you noted. I know that 99.99% of climate analysis overlooks the 35 month negative Oceanic Nino Index (ONI), that occurred from 1998-2001, but only 2 other cold periods have occurred since 1950. We are at 22 months and counting without a positive value, as seen here. http://www.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/ensoyears.shtml
Not surprising. Mother nature just doing her thing. There will always be periods of greater activity and periods of less activity. I see no change from “situation normal”. Nevermind the fact the data from the past was nowhere near as comprehensive since the advent of satellite technology, and older historical data reaching back hundred’s of years is non-existence.
This is exactly the kind of thing that needs to be reported. Here is the perfect example of data that 100% contradicts what Al Gore said in his Nobel Prize winning slide show. When is someone from the media going to ask him about it?
http://news.aol.com/article/climate-changes/376821
I posted this over at CA also.
I found this while looking at a paper by Leif Svalgaard. If you see on page 3 the IMF from the Ulysses spacecraft normalized to distance of 1 AU. There is a offset of about 2 to 3 years but is close to your ACE plot.
http://www.leif.org/research/Most%20Recent%20IMF,%20SW,%20and%20Solar%20Data.pdf
In case anyone is interested, the last IPCC report predicts (with a lot of uncertainty) that there will be FEWER hurricanes in a warmer world, not more.
Pamela Gray:
We have the same cooling trend year-on-year for Feb and March, here in Los Angeles.
http://www.wrh.noaa.gov/climate/temp_graphs.php?wfo=lox
Anybody else out there have similar results?
Here is a paper on hurricanes for the last 5000 years. Looks at El Nino vs Hurricane intensity.
Graph on page 467 shows 5000 year time scale.
There are very clearly defined intense hurricane grand minimums.
Oops – link.
http://www.fs.fed.us/global/iitf/pubs/nature_donelly_woodruff.pdf
westhoustongeo (04:37:57) :
Hey, Len van Burgel
Thanks for clearing up the definition of “willy-willy”.
You have, however, left me with “thunderbox” to puzzle over
I think it’ some sort of musical instrument. I’m sure Rolf Harris played one before he got his wobble board and stylophone.
Interesting stuff. Much of the warming since 2007 has occured in the NH, primairily over land, as the oceans have actually cooled a bit. Subtract positive anomalies over East Asia and China and things would look quite different. I’m looking forward to the next El Nino event, and how it will play out.
I thought I had read somewhere that a warmer atmosphere did NOT cause more hurricanes. Yet the article states:
So I’m confused…
Roger, you graph looks like it belongs up NORTH! Just how wide spread is this March plunge? If this is any harbinger of what is coming, I predict LA could be cooler but very dry this summer. Problem with that is the ground is storing water so you will have plenty of brush growth. But it will dry out and become a heavy fuel load. Cold does not mean fires can’t happen. They may even happen with more frequency if the decade before was warm and wet.
Len van Burgel (07:13:13) :
Re: westhoustongeo (04:37:57) :
I thought you would never ask! A thunderbox is an old aussie backyard dunny (lavatory). In the outback it wasn’t of the sturdiest construction.
It’s ironic that in the outback you call it a thunderbox, while in the USA we call it an outhouse.
John, stormy weather happens between cold fronts and warms fronts. When the leading edge of colder fronts is pushed South, it meets up with warmer fronts coming up for the equator in the Atlantic. The meeting of the two is violent. When the NH is warmer, it is more in line with the equator systems in term of temperature so stormy weather is less severe without high category hurricanes. The reports of more hurricanes happening during global warming is all hype. Ask a meteorologist that tracts systems and is responsible for reporting them as well as predicting them. Don’t ask an AGW advocate.
B Kerr (04:45:08) :
Just to clarify some points, max wind velocity in hurricanes occurs only in the eye wall and decreases quickly away from there. Tropical storm force winds are what extend out from the center sometimes for hundreds of miles . Tropical storm force winds are sustained winds from 39 mph up ot 73 mph so there is a large variance of how much energy a storm has. A compact storm like Hurricane Charley, Cat 4 at landfall, destroyed Punta Gorda but left me, a meer 24 miles away, basically untouched. Katrina was a large Cat 3 at landfall and most of the destructive damage was from storm surge east of New Orleans. The broken levees destroyed New Orleans not the Hurricane.
What about all the energy that is stored in those tropical depressions that don’t make it to hurricane/cyclone cathegories?
What about all the energy accumulated in the atmosphere that we can see sometimes during the summer (i.e.thunders)? Where is all that energy coming from? Why I ask this? It is obvious that during winters there is little lightnings, and the reverse is true during summer time. If the planet is warming or cooling, wouldn’t that be reflected in the lightning counts? Is there a database showing those?
Pearland Aggie,
Thanks for that. If those readings were correct it must have been a very compact cell of energy.
As an aside, TC Hamish which (thankfully) missed the Queensland coast just in the past week was orders of magnitude larger.
You clearly don’t know what the phrase ‘orders of magnitude larger’ means.
FYI, it means, at least hundreds to thousands of times larger.
I found this site for the global lighning strikes : http://webflash.ess.washington.edu/
They have some pretty cool satellite pictures but are the data available in term of total counts per month/years for the past?
Tom in hurricane prone Florida (14:02:01) :
“max wind velocity in hurricanes occurs only in the eye wall and decreases quickly away from there. ”
Thanks I can live with that. Jut could not get energy = v^2.
We do not get many Hurricanes in Scotland.
http://glasgow.openguide.co.uk/wiki/The_Glasgow_Hurricane
We were in Nokomis Beach the week before Hurricane Charley.
Glad you got through it. Our hearts were in our mouths worrying about you guys.
Bonnie and Charley landed here and washed out the road to the Highlands.
Spent end of August/September in Naples.
We got Faye, Gustav, Hannah and watched Ike out in the Gulf, an education.
We are coming back!!
The good news: Nature is validating big Al’s slide presentation. The bad news: Only if his charts are turned upside down.
Kaboom says (and I have to agree with Philip_B):
As someone who went through Cyclone Tracy which you mention subsequently, I suspect you have not quite got the concept of an order of magnitude. “Orders of magnitude” means two or three or more orders of magnitude, and as mentioned, that means 100 times to 1,000 times or more as powerful as the first cyclone you mention. I doubt that any such cyclone has ever existed on this planet.
Why I ask this? It is obvious that during winters there is little lightnings, and the reverse is true during summer time.
It depends where you live. Where I live in Perth, Australia thunderstorms are more common (about twice as common) in the winter than in the summer. Basically the air is normally too dry in the summer. And I assume water droplets are needed to accumulate the electrical charge needed for lightning.
Although, winter thunderstorms produce less lightning than summer thunderstorms.
Scroll to the bottom of this link.
http://www.bom.gov.au/weather/wa/sevwx/perth/storms_cool.shtml
La Niña
Friday, 13 Mar 09, climate
The latest sea temperature anomaly map shows a dramatic increase in La Nina chill through the eastern equatorial Pacific. Most models had shown weakening La Nina trending toward neutral conditions this summer. It appears that the models may be wrong, unless the current surge of relatively cool water is warmed quickly as the equinoctial sun passes northward over the equator. If strong La Nina persists through the spring, the odds for a stormy Atlantic hurricane season will rise.
Still no sunspots…
From http://www.seablogger.com/?p=13051#comment-145147
http://www.osdpd.noaa.gov/PSB/EPS/SST/SST.html