The International Sun-Earth Explorer (ISEE-3) Reboot Project, Bringing an Old Bird Back to the Earth, and Back to Life

300px-ISEE3-ICE[1]

ISEE3-ICE, launched in 1978

Citizen backed space science attempts to do the near impossible

Guest essay by Dennis Wingo

Life isn’t fair. So many times in my life I start to do something and end up going in a completely different direction. I do a lot of advanced technology spacecraft and systems design for lunar, mars, and asteroid exploration. I love to think about, plan, and build systems that will help mankind extend its reach beyond the Earth.

I was very fortunate that when I left the computer industry in my late 20’s to return to college and get my degree that I was able to have many wonderful mentors at the University of Alabama in Huntsville. Some of these were the German rocket scientists like Dr. Ernst Stuhlinger and many of the Americans who made up the team that built mankind’s first lunar exploration systems. When I was in my early 20’s in the early 1980’s I worked as a non-degreed engineer in the California computer industry. I had great mentors there as well, who taught me how to be a good engineer in the extremely competitive microcomputer industry of the era.

 

One of the companies in the microcomputer industry back then was Vector Graphic Inc., who before the advent of the IBM PC was one of the leaders and innovators in the industry. My boss and the manager of engineering was Nick Esser, an incredible engineer and a great mentor. I would often come bounding into his office with what I thought was a great idea. He would immediately stop me and say, sounds good, now go research what has already been done in this area. Well we did not have the online resources that we have today so in order to impress the boss, I would go and do a lot of in depth research, perusing IEEE proceedings, textbooks, ask people questions. I would often determine that my bright idea was someone else’s before me and often they had usually done it better. This taught me two things. The first is that there are a LOT of smart people out there, many of them much smarter than I (when you are 22 this is a revelation). The second was that in doing this research I would almost always come out smarter myself. I took this incredible lesson with me to my college years and it probably has made a critical difference for me in how I think about technology and engineering in general. It is also the origin of the life is not fair comment.

How the Above Relates to the ISEE-3 Project

Many of you know about our Lunar Orbiter Image Recovery Project (LOIRP), and many of you who read this helped us out last year as we raised a critical $68k dollars that helped us get over the top to obtain more funding, which has allowed us to finish all of the tape captures (thanks!). That project started when I was working in 1989 with Lunar Orbiter Lunar images derived from film, and found out after my research that the original tapes had much higher dynamic range. This gave me the technical foundation to sell the project to NASA in 2008 after we found and obtained the tapes and tape machines. Despite deep skepticism that the project was viable or worthwhile we were able to show the improvements to worldwide acclaim and thus gained the credibility that we could work with and improve old data sets.

Like most engineers and scientists I would rather work on new missions but it just kept bugging my engineering sensibility that these tapes were not being saved and also I knew that if our team did not take on this project, no one else would, and thus an incredibly valuable part of our history as well as incredibly valuable data for future science and exploration would be lost. Now that the LOIRP project is coming to a successful conclusion, another instance of a violation of my engineering sensibility has taken place. That violation is that a spacecraft, originally called the International Sun-Earth Explorer or ISEE-3 is coming back to Earth in August and if something is not done it will be lost forever. Why should anyone care? That my friends is the rest of the story and why I am going to ask you to liberate some of your hard earned cash to give to this project…

The ISEE Mission

The ISEE-3 mission is the third of three spacecraft, two from NASA and one from ESA. Figure 1 is the NASA graphic for the mission:

clip_image002

Figure 1: ISEE-A,B,C (1,2,3) Missions 1978

The three ISEE spacecraft are comprised of a mother/daughter (ISEE-1/2) configuration and a heliocentric spacecraft (ISEE-3). The ISEE-1 and -2 spacecraft, mated together, were launched on October 22, 1977, and the ISEE-3 was launched on August 12, 1978. The purpose of the ISEE Program was to increase knowledge of the magnetosphere, interplanetary space, and the interactions between them.

The original mission objectives were:

a. Investigate solar-terrestrial relationships at the outermost boundaries of the earth’s magnetosphere.

b. Examine in detail the structure of the solar wind near the earth.

c. Examine the shock wave boundary between the solar wind and the earth.

d. Investigate motions of, and mechanisms operating in, the plasma sheets.

The ISEE-3, the one of interest today, had an extensive array of experiments, designed to probe solar emissions and to gauge the effect of these emissions on the Earth’s magnetosphere. Figure 1 shows a graphic of the ISEE-3 spacecraft:

clip_image004

Figure 2: The ISEE-3 Spacecraft

The ISEE-3 spacecraft is a spin stabilized vehicle and was built by Fairchild Space in Maryland (now Orbital Sciences Corporation). Look at the graphic above and you will see that the 3D radio mapping antenna in the radial axis is 92 meters across from tip to tip! Figure 3 is the vehicle in testing and a graphic of it in space:

clip_image006clip_image008

Figure 3: ISEE-3 In Testing and a Graphic of its 1985 Comet Flyby

Table 1 shows the instruments for ISEE-3 and their operational status as of the last substantial contact in 1999:

clip_image010

Table 1: ISEE-3 Instruments, the Principal Investigators, and the Last Known State

In short, this is an incredibly capable spacecraft. If that was it, it would be an interesting story. However, this is just the beginning.

The ISEE-3 Extended Mission Turns into ICE

Most spacecraft in this era were not really meant for extended operations beyond a few years (Voyager 1 and 2 being the obvious exceptions). The primary mission of the ISEE-3 spacecraft was three years. The ISEE trio were designed to operate through solar cycle 21 maximum and all three operated brilliantly. These were the first spacecraft dedicated to the study of heliophysics, a term coined in 1981 based upon the discoveries of the ISEE satellites. A NASA Technical Reports Server (http:ntrs.nasa.gov) search turns up dozens of scientific papers, almost all breaking new ground in the emerging discipline of solar/terrestrial physics.

The ISEE-1 and 2 spacecraft were in low earth orbit, but ISEE-3 was placed into the Earth/Sun Lagrange point L1, the first spacecraft to be sent to that location. This location, about 1 million kilometers closer to the sun than the Earth, is still gravitationally bound to the Earth and thus is “upstream” of the planet and in front of the bow shock of the Earth’s magnetosphere. This is the perfect vantage point for a maximally instrumented spacecraft to observe solar phenomenon before it reaches the interface between the solar wind and the magnetosphere.

Dr. Robert Farquhar, ISEE-3 Flight Dynamics Manager comes up with a scenario that will take ISEE-3 out of the Earth-Moon system and take it to an asteroid flyby with comet Gaicobini-Zinner and then later to comet Halley. Figure 4 shows the flight trajectory for this extended mission:

clip_image012

Figure 4: ISEE-3/ICE Extended Mission to World’s first Comet Flybys

In order to obtain the energy necessary to escape Earth orbit and do the flybys, the ISEE-3 spacecraft did multiple flybys of the Earth and a final flyby of the Moon. This is an extremely delicate dance of orbital dynamics, trading of gravitational energy for kinetic energy, developed by Dr. Farquhar and executed by his team. When ISEE-3 did its final lunar flyby it was renamed the International Cometary Explorer (ICE). The renamed ICE spacecraft left the Earth/Moon system in September of 1982 (about the time I started bugging my boss). On September 11, 1985 ICE passed through the tail of comet Gaicobini-Zinner at a distance of less than 8,000 kilometers, a masterful feat of celestial navigation. Figure 5: shows the encounter:

clip_image014

Figure 5: ISEE-3/ICE Passes the Tail of Comet Gaicobini-Zinner Sept 11, 1985

ICE used its full suite of instruments during this pass and had the first instrumental confirmation that a comet perturbs the solar wind and the solar magnetic field. Again, a search of the NASA Technical Reports Server finds dozens of papers on the subject of this flyby and the next one at comet Halley. Figure 6 shows the Halley and Gaicobini-Zinner flyby:

clip_image016

Figure 6: Two Comet Flyby’s By ISEE-3/ICE Spacraft in Heliocentric Orbit

The illustration in figure 6 is relative to a fixed Sun-Earth line, essentially an inertial point in space. The flyby of Halley’s comet was from a further distance of about 21 million kilometers. Even at this distance the sensitive instruments on ICE detected the influence of the comet on the surrounding solar wind and magnetic field. After the flybys ICE was tasked to do complimentary studies of the interplanetary solar wind, magnetic fields, and coronal mass ejections in concert with the NASA/ESA Ulysses spacecraft, that had been slung into a solar polar orbit by a close flyby of Jupiter.

After these flybys of two comets and the solar mission by this now veteran spacecraft, Bob Farquhar and his flight dynamic guys had one more trick up their sleeves, and it was a doozy.

ICE/ISEE-3 Returns to the Earth in 2014

Figure 7 shows the final tour-de-force genius of the ICE navigation team:

clip_image018

Figure 7: ICE Trajectory from April 1986 Through August 2014

The above illustration shows the orbital trace of ICE/ISEE-3 from a fixed Sun-Earth line. Each loop represents each time the ICE spacecraft passed the Earth. It has been in a 355 day solar orbit so the Earth “laps” ICE in those number of days. The orbit of ICE is slightly eccentric orbit with an aphelion (furthest distance from the sun) of 1.03 AU, and a perihelion (closest to the sun) of 0.93 AU. What this does is to set ICE up for an encounter with the Earth, a lunar flyby, on August 10th of this year.

The Return and the Dilemma

On March 2nd 2014 a group of amateur radio satellite operators at AMSAT-DL in Germany heard the ICE spacecraft carrier, that had been left on intentionally by NASA. Figure 8 shows the signal trace:

clip_image020

Figure 8: ICE S-Band Transponder First Reception (Down Converted)

ISEE-3 ICE spacecraft signal spectrum recorded on March 2, 2014 at 1822 UT using the 20m dish antenna of Bochum Observatory, Germany. Range 43M km, azimuth 230°, elevation 49°. Average of 2 spectra spanning 2.1 seconds.

This is the reception report from the radio telescope at Bochum Observatory. This was followed by a reception report from the Search for Extraterrestrial Intelligence (SETI) Allen array on March 20th. This was followed by a reception report by Arecibo, the largest radio telescope in the world on April 9th of this year. Another report comes from Morehead State University, who we are working with in figure 9:

clip_image022

Figure 9: Morehead State Reception of the ICE Telemetry Transmitter 9/10/14

The dilemma is this, after all this time, after all the travels, and all of the planning by the ICE flight dynamics team, the one thing that they could not have foreseen in 1987 is that NASA would no longer be able to hear or to pay for the recovery of ICE. Linked here is an article by Emily Lakdalla of the Planetary Society. She copied a post by NASA Goddard on the subject. It is reposted here:

Communication involves speaking, listening and understanding what we hear. One of the main technical challenges the ISEE-3/ICE project has faced is determining whether we can speak, listen, and understand the spacecraft and whether the spacecraft can do the same for us. Several months of digging through old technical documents has led a group of NASA engineers to believe they will indeed be able to understand the stream of data coming from the spacecraft. NASA’s Deep Space Network (DSN) can listen to the spacecraft, a test in 2008 proved that it was possible to pick up the transmitter carrier signal, but can we speak to the spacecraft? Can we tell the spacecraft to turn back on its thrusters and science instruments after decades of silence and perform the intricate ballet needed to send it back to where it can again monitor the Sun? The answer to that question appears to be no.



The transmitters of the Deep Space Network, the hardware to send signals out to the fleet of NASA spacecraft in deep space, no longer includes the equipment needed to talk to ISEE-3. These old-fashioned transmitters were removed in 1999. Could new transmitters be built? Yes, but it would be at a price no one is willing to spend. And we need to use the DSN because no other network of antennas in the US has the sensitivity to detect and transmit signals to the spacecraft at such a distance.



This effort has always been risky with a low probability of success and a near-zero budget. It is thanks to a small and dedicated group of scientists and engineers that we were able to get as far as we have. Thank you all very much.

Thus, with an impossible schedule, and without a budget, was born the ISEE-3 Reboot Project

The ISEE-3 Reboot Project Begins

I have known about the ISEE-3/ICE spacecraft since my college days at the University of Alabama in Huntsville where I worked for the Center for Space Plasma and Aeronomic Research (CSPAR). I have known Dr. Farquhar personally and by reputation for many years. His work in orbital dynamics should have gotten him a Nobel Prize for its originality and brilliance. When I read the above about them not having the equipment to talk to the spacecraft, it got me thinking and researching.

Our team has already successfully built a demodulator and software to recover images and data from the 1960’s Lunar Orbiter. We have also recovered and modernized the infrared images from the Nimbus I,II, and III spacecraft of the 1960’s. I had a vague notion that the ISEE-3 was not that much more advanced, so yet again our team started diving into the data and found that there was no computer on the spacecraft, which made things easier. The modulation scheme is simpler than modern cell phones, which use a modern technique of using software for the modem, directly digitizing the signal and then processing it. It seemed logical that this could be used for the ISEE-3 spacecraft.

Last year, as most readers who know about the Lunar Orbiter LOIRP project know, we raised some significant money last year, about $68k, which spawned more private funding, which allowed us to make enough progress to get further funding that allowed us to completely finish the tape digitization portion of that project (we are still processing the final products). Keith Cowing of NASA Watch was instrumental in making that happen. These types of crowd funding projects require someone who really knows the media and very few people know more than Keith about modern online media Keith is also our co-lead on the LOIRP project. So we started talking about what we would do if we were to do this project. Keith is starting up a non profit STEM education project called Space College and this seemed to be a great project that we would use to involve students, volunteers and others attempt to recover the spacecraft.

Keith, being a former NASA civil servant and a long time pain in the rear/friend of the agency, knows everyone. So, after it was determined by NASA GSFC that they could not do this, and after a teleconference where NASA headquarters told NASA GSFC, their contractors, and us that there was no money for any recovery effort, we started another crowd funding effort on Rockethub. Things have started moving since then, beginning with panic. Why, because we only have a short amount of time to make this happen! We are fortunate than in less than two weeks we have raised over $29k of our $125k goal, but that is not where the panic is.

A question that you might have is why do this, what is going to come from it if I give a bit of my hard earned money to support it? The long term answer is that we want to put it back into Earth Orbit, turn the science instruments on, and have it be an open science data source, used for STEM education, amateur radio solar predictions, and for science about the sun. It is also an incredible technical challenge for as far as we know, no private entity has ever commanded, communicated with, and returned to earth orbit a spacecraft! It is also a testament to the foresight of Dr. Farquhar and his team that deserves recognition. Here is a list of firsts for the ISEE-/ICE spacecraft:

• First Mission to a Libration Point

• First Mission to Use a Suite of Instruments across the electromagnetic spectrum to measure the dynamics of the magnetosphere between the Earth and sun during a solar maximum.

• First Lunar Flyby for Gravity Assist to an Interplanetary Trajectory

• First Comet Flyby (1985)

• Second Comet Flyby (1986)

• 36 Year Trajectory to Return to Earth (2014)

This is a truly historic spacecraft and to not try and save it to me is an engineering and science tragedy that offends my engineering sensibility. Here simply is the problem in Figure 10:

clip_image024

Figure 10: Range from the Earth of the ICE/ISEE-3 Spacecraft

In looking at figure ten you see as we get closer to the date of the perigee pass around the Earth, the distance continues to decrease as you might expect. The problem is that no matter how good those guys were in doing the maneuvers in the 1980’s, it is not perfect and will not result in a capture into Earth orbit. Thus we have to fire the thrusters of the spacecraft by late June or there will not be enough fuel left to make the course correction to put it into a permanent earth orbit. Thus, Isaac Newton is driving this bus and unless we change the course, the spacecraft will drift back into planetary space, not to return until 2029.

ISEE-3 Reboot Technical Issues and Our Process

There are several questions that must be answered in the ISEE-3 Reboot Project.

– Is the Spacecraft Still Alive (verified yes)

– Can We Talk to it? (Under Development)

– Can the Propulsion System Be Activated (Working on it)

– Can the Spacecraft Be Put Back Into A Stable Earth Orbit (Depends on the Previous Questions)

We have made a lot of organizational and technical progress toward answering these questions. In summary, we have the folks at Morehead State University in Kentucky working with us on the project. We have also gained the agreement from Arecibo that they will listen to the spacecraft more for us and that if we send them a transmitter that is easy to set up, that they will transmit our command signals to the spacecraft. This is beyond valuable and means that we don’t really have to worry that much about link margin but can just blast a signal that way, especially as the range is decreasing every day.

Our plan for the recovery is this.

1. Secure and send 200W transmitter to Arecibo.

2. Arecibo sends simple audio tone to the spacecraft to ascertain whether or not the ranging function was left on.

3. Develop a single manual command that can be fed into the HP synthesizer at Arecibo to turn the Engineering Telemetry function on.

4. Ascertain the health of the spacecraft and debug the telemetry recording and display system.

5. Figure out how to do the ranging, we  have a team working this right now.

6. Update any trajectory (Dave Dunham/Farquhar).

7. Install 700 Watt transmitter at Morehead State and test as the spacecraft gets closer.

8. Command the burn either at Morehead or Arecibo.

9. Pray

10. Do ranging after the spacecraft is captured into Earth orbit for final orbital insertion burns (much easier to do with reduced range).

11. Put into final orbit and re-commission the science experiments.

We have several groups of people working with us right now, almost everyone a volunteer at this point. We still have a couple of really big problems (well maybe four or five) to solve, the ranging seeming to be the biggie.

We will have a lot more press releases and blog posts out over the next few days but I wanted to give everyone the highlights. We are going to setup our mission operations center at a location that I can’t disclose until some paperwork is finally signed but it is in progress. Really all we are going to do is to revive the command and telemetry consoles. We are going to display in real time the propulsion system, the attitude determination and control system, as well as the power system. We have several analyses done, documents scanned, data transferred from archived pdf’s to excel, and many other things. We have an incredible bunch of people helping us but we need one thing more…

Funding

As I stated earlier, we are right now an almost completely volunteer project with the exception of a couple of my engineers at my small company who are working on critical aspects of the project. We are raising $125k that we hope will get us to the point where we get the steps outlined above done. If we can do this, we will have an open source, publically accessible satellite data stream of the first open source satellite above Low Earth Orbit. Personally I am already learning boatloads about how to operate and control an interplanetary satellite. I am still learning after all these years and the design of the ISEE-3 has some incredibly interesting features that I think are valuable to spacecraft design today that we may use.

WE NEED YOUR HELP

This is not like our Lunar Orbiter project where we have the data and can go as we pay to get the images downloaded, or like the Nimbus project where the data goes to the academic world sometime down stream. If we don’t fire the thrusters by late June, figure 11 is what the orbit will look like:

clip_image026

Figure 11: The Fate of ICE/ISEE-3 If We Fail

I can tell you that, from being completely panicked that this was going to be darn near impossible, it is just going to be very darn hard. It will be impossible without your financial help. Here is the trajectory in figure 12 if we save the bird:

clip_image028

Figure 12: ISEE-3R Flight Path Baseline If We are Successful

Help us be successful. What I would like to ask of this community is that 300 people give $100 each to the project. For those who cannot do that, please do what you can. I can tell you though, that if the 300 give $100 the rest will come.

Donate with credit card here: http://www.rockethub.com/projects/42228-isee-3-reboot-project-by-space-college-skycorp-and-spaceref

Or, checks to:

Skycorp Incorporated
ISEE-3 Reboot Project
P.O. Box 375
NASA Ames Research Park
Moffett Field, CA 95033

It is just how the momentum thing works in crowd funding. I know that this is hard earned money and that this is a science mission. However, it is also about bringing a team of people together to do what other people say is impossible. Going back to my opening, I did a lot of research on this, and by standing on the shoulders of giants like Bob Farquhar, Dave Dunham, and the rest of the ISEE-3/ICE crew, we can do this. NASA is providing moral support and documents and have indicated their positive support for our effort. More to come soon, so again thanks and I look forward to giving everyone more reports soon!

About these ads

58 thoughts on “The International Sun-Earth Explorer (ISEE-3) Reboot Project, Bringing an Old Bird Back to the Earth, and Back to Life

  1. Reminds me of my early teen years refurbing and and converting WWII military electronics to useful powerful tools. Radios, radar, chart recorders, O’scopes and more.

    Check’s in the mail.

  2. Dennis,
    Never mind – computer was ‘acting up’ and a after a ‘restart’, displays the link now.
    Mac

  3. Hey, this has real Star Trek feel to it, like the Enterprise just picked up a weak signal and it turns out to be some ancient Earth model that no one has the codes for. Brilliant.

    It sounds like one hell of toy to get your hands on. I don’t have $100 lying around but I hope you catch your bird.

    Great project, and an impressive to accolade to what NASA used to be about.

  4. I’m in but I need a mailing address to send a check. I do not use credit cards on the internet. Period. I intend to donate $100.

  5. Tomorrow. The bank just pulled the plug on the card I use for ‘net activities due to a clearly fraudulent charge and they’re fedexing a new one ;(

    A gamble, but one with a potential payout more interesting than cash.

    And to the extent that the thing might prove useful for future work – well, that’s a little like teaching a modern high-schooler that engineering was once done with graph paper, slide rules, and pantographs…

  6. I am always amazed by the posts at WUWT about rescuing / reviving / reusing satellites.
    I normally don’t donate to other peoples hobbies, my own hobby is far too expensive for that (flying airplanes). This is the exception that proves the rule, $100 send form The Netherlands.

  7. Wow. I’m amazed the old bird has propellant gas left!

    I remember correcting a bug in the orbit determination software
    used at NASA GSFC related to the ISEE-3 lunar swingby. The
    trajectory was supposed to come (if memory serves correctly)
    within 19 kilometers of the moon’s surface during December, 1983.
    The original runs showed lunar impact! This turned out to be an
    artefact of the use of one particular coordinate system. I had
    a bit of a reputation as a coordinate system expert, so I was
    assigned to fix the software. It was a one-line fix, simple once
    I found the one line!

    So Dave Dunham and Bob Farquhar are working on trajectory
    updates? Brilliant orbit analysts, both of them.

  8. I’m in as soon as I get home to a credit card (Dave Ramsey please forgive me), but if it says ‘Veeger’ in response to your first commands I want video.

  9. …..So Dave Dunham and Bob Farquhar are working on trajectory
    updates? Brilliant orbit analysts, both of them.

    Indeed Dave Dunham and Bob the maestro Farquhar are on the team.

  10. I’m feeling guilty. I’ve contributed to two projects Anthony has sponsored but never to Anthony. Send me a mailing address and I will send a check for $100.

    REPLY: Thanks for the thought, but please wait for something other than self guilt as a motivator – Anthony

  11. I dropped a C note on them. This will be a fun project to follow. Anthony, can you try to post updates from time to time on the status?

  12. Anthony I’ve been planning to donate for quite a while. I just keep putting it off. Sent me an address. ps. I’ve never really felt guilt in my life. If you don’t want to put an address in the blog you have my E-mail.

  13. We will post weekly updates for Anthony. There is not much time so we will know very soon!!

    Thanks again to everyone who is contributing either monetarily or in spirit….

  14. This is the best of the best of citizen science enabled by the net that Al Gore did not invent.
    I am in, since use a web credit card only for web stuff, mostly boring purchases of paywalled science papers needed for my companies or books. Heck, at the going rate of about $30 per, this is potentially worth much more than any three recently published climate papers. And if you fail, it will still have been a good honest try. Unlike most climate science these days.
    Thanks for this guest post. May the thruster force be with you very soon.

    BTW, my father was program director of the Atlas missile under LeMay, and knew a thing or three about gravity and orbits. Consider my contribution arising from future energy scarcity profits and related endeavors to be in his honor, buried at Arlington with the other only US neck order (Legion of Merit) and full military honors.
    Now bring this bird most likely launched by an Atlas derivative back home. You can do it.

  15. Is there a University that has an interest in this ? And funds ? ALUMS ?
    This could open Engineering “doors” /minds!

  16. A suggestion to post the donation link to the side panel so those of us that must wait to donate do not lose track of the concept?

    A side comment that with NASA’s rather bloated largesse that is wasted on useless AGW promotion/meetings/travel they could easily find real science instead.

  17. Dennis,

    This is a great project. You catch me at a bad moment, but I’ll see if I can’t scrape it up next week. Best of luck!

  18. To everyone here. I can’t thank you enough for this. We are well on our way to our goal. Please tell any geek friends you have about this. We are developing the modems, the telemetry and command system, everything that is needed to communicate with the bird.

    I will post updates next week.

  19. To everyone, this project is not only crowd funded, it is crowd sourced in terms of the work being done. We will be releasing our teams this week, in software radio, for developing the screens for processing telemetry and commands, and the rest.

    I have already learned a great deal. It is always more fun to work with hardware than it is to just write about it.

    Oh, by the way for WUWT readers who may have noticed, I channeled Willis in my presentation here.

    :)

  20. Fantastic project and read. Well done so far. All the best for success. I would gladly donate unfortunately I cannot.

  21. Don’t understand all the trajectory ins and outs, but sounds exciting, and I’ll contribute. What the heck is the matter with NASA? This is lunch money for them.

    Have you approached the National Space Society for help? I didn’t see anything in their Spring 2014 magazine (Ad Astra). If you could get them to do an e-mailing to NSS members, with this post linked or included, that would greatly expand your reach.

    /Mr Lynn

  22. Also, can we use PayPal? Many see that as a safer Internet medium for payment, even using credit cards (which you can do through PayPal, if you look carefully and click ‘change’ method of payment). /Mr L

  23. Mr. Lynn and others.

    Here are the alternate means of funding this on Rockethub…

    PayPal: Please feel free to send your payment in USD via PayPal to: support@rockethub.com

    Check / Money Order: Your check / money order in USD should be made payable to: “RocketHub Inc.”

    Please send your contribution to: RocketHub ATTN: Jed Cohen, 340 West 42nd Street, #880, New York, NY 10108

    If you choose either the PayPal or Check/Money Order payment methods, along with your payment, please include a note with the following information:

    1. Your name (so we can credit you for the contribution)
    2. Your email address (so we can confirm receipt)
    3. The name of the project (ISEE-3 Reboot Project)
    4. The reward of your choice (so we can inform the project leader)

  24. Dennis,
    Before your post at April 27, 2014 at 11:12 am, I had already sent a check payable to Dennis Wingo OR Skycorp Incorporated to the address listed way in your article. I hope those payee choices will not be a problem.

    You might want to clarify exactly where checks shopuld be mailed and to whom as PAYEE.

  25. I’d started to send a donation but could not find an anonymous means to do so. I’m ok using PayPal but still don’t want, need, or expect recognition or anything else. Particularly I really don’t want to land on another list of known donors as that has been a plague that has been hard to overcome. I’m still getting mail to help victims of Katrina. Lesson learned. I’m happy to help, I just don’t want to get into a relationship :)

  26. F. Ross, not a problem. If you send it directly to us, we get it and we tell the Rockethub folks. That way your name does not get into their system, just the amount.

    dp

    I promise that I am not putting together a mailing list. For those that gave to us last year for the Lunar Orbiter, I promise that not one of us sent anything to them.

  27. Steve M, just read your post, thanks John Batchelor is the most underrated radio personality in the nation. He scares the heck out of me with what he is doing but he is the only one getting the right people to interview about what is going on today in the world.

  28. Also, Please do NOT send a check written to me personally. If you send something directly, please send it to Skycorp Incorporated, which is my company that is doing the technical work.

    Thanks

  29. I posted a plug over at the MIT Alum group on LinkedIn and made my patch-worthy donation at RocketHub. What you are attempting is making us old guys proud. I hope the NPR piece stirs up enough interest to put you over the top in funding.

    –Prof. Larry Constantine (pen name, Lior Samson)

  30. I’m currently in the hospital, but when I get out ill donate. I flipping love science!

  31. Life imitating art. About 35 years ago there was a TV series called “Salvage 1″ about a junk man who built a rocket to recover material left on the moon by Apollo and to recover dead satellites from orbit. Some how being a part owner in a satellite (even if it is nothing more than a status symbol) appeals to me. As a child I watched the space program from the early man launches and one of the biggest letdowns was the day they ended the moon program. There isn’t much exploring when you are spam in a can going around the earth every 90 minutes!
    Our future will be with the little guy who figures out how to leave the earth at a fraction of the government cost.
    There may not be much excitement recovering old technology but it could be training and a good addition to you resume when the time comes to do something that nobody has done before. Government is only interested in space as long as it gets them votes. Today people look in their own pockets more than they do at the sky so if we are to return to space in a big way it will be industry and the small guy that take us there. We need the it’s impossible but we can do it attitude.
    I’m in for a hundred.

  32. 1. This deserves a sticky at the top of the homepage for the donate link at least.
    2. If 2,965 backers can donate $221,267 (roughly three times the goal) for a Space Command movie than we can certainly pony up the $125,000 to prove that citizen backed science can do the nearly impossible.

Comments are closed.