Study: Weather anomalies accelerate the melting of sea ice

From ETH ZURICH comes this study with a “never before been seen on this scale” claim. The problem is, we’ve really got only a few decades of observations to compare with, plus 2015/16 was the year of the “monster” El Niño, and there were all sorts of resultant weather anomalies. We don’t have enough weather data to know if this sort of extreme has happened before, because we haven’t been watching the Arctic closely until recent decades.

Weather anomalies accelerate the melting of sea ice

Melting sea ice is forming characteristic puddles on its surface. CREDIT NASA Goddard Space Flight Center

In the winter of 2015/16, something happened that had never before been seen on this scale: at the end of December, temperatures rose above zero degrees Celsius for several days in parts of the Arctic. Temperatures of up to eight degrees were registered north of Svalbard. Temperatures this high have not been recorded in the winter half of the year since the beginning of systematic measurements at the end of the 1970s. As a result of this unusual warmth, the sea ice began to melt.

“We heard about this from the media,” says Heini Wernli, Professor of Atmospheric Dynamics at ETH Zurich. The news aroused his scientific curiosity, and a team led by his then doctoral student Hanin Binder investigated the issue. In November 2017, they published their analysis of this exceptional event in the journal Geophysical Research Letters.

In it, the researchers show how these unusual temperatures arose: three different air currents met over the North Sea between Scotland and southern Norway, carrying warm air northwards at high speed as though on a “highway”.

One air current originated in the Sahara and brought near-surface warm air with it. To begin with, temperature of this air was about 20 degrees Celsius. While it cooled off on its way to the Arctic, it was still above zero when it arrived. “It’s extremely rare for warm, near-surface subtropical air to be transported as far as the Arctic,” says Binder.

The second air current originated in the Arctic itself, a fact that astonished the scientists. To begin with, this air was very cold. However, the air mass – which also lay close to the ground – moved towards the south along a curved path and, while above the Atlantic, was warmed significantly by the heatflux from the ocean before joining the subtropical air current.

The third warm air current started as a cold air mass in the upper troposphere, from an altitude above 5 kilometres. These air masses were carried from west to east and descended in a stationary high-pressure area over Scandinavia. Compression thereby warmed the originally cold air, before it entered the “highway to the Arctic”.

Poleward warm air transport

This highway of air currents was made possible by a particular constellation of pressure systems over northern Europe. During the period in question, intense low-pressure systems developed over Iceland while an extremely stable high-pressure area formed over Scandinavia. This created a kind of funnel above the North Sea, between Scotland and southern Norway, which channelled the various air currents and steered them northwards to the Arctic.

This highway lasted approximately a week. The pressure systems then decayed and the Arctic returned to its typical frozen winter state. However, the warm period sufficed to reduce the thickness of the sea ice in parts of the Arctic by 30 centimetres – during a period in which ice usually becomes thicker and more widespread.

“These weather conditions and their effect on the sea ice were really exceptional,” says Binder. The researchers were not able to identify a direct link to global warming. “We only carried out an analysis of a single event; we didn’t research the long-term climate aspects” emphasises Binder.

High-pressure systems cause sea ice to melt

However, the melting of Arctic sea ice during summer is a different story. The long-term trend is clear: the minimum extent and thickness of the sea ice in late summer has been shrinking continually since the end of the 1970s. Sea ice melted particularly severely in 2007 and 2012 – a fact which climate researchers have thus far been unable to fully explain. Along with Lukas Papritz from the University of Bergen, Wernli investigated the causes of these outliers. Their study has just been published in the journal Nature Geoscience.

According to their research, the severe melting in the aforementioned years was caused by stable high-pressure systems that formed repeatedly throughout the summer months. Under these cloud-free weather conditions, the high level of direct sunlight – the sun shines 24 hours a day at this time of year – particularly intensified the melting of the sea ice.

Areas of low pressure “inject” air masses into the Arctic

These high-pressure systems developed through an influx of air from temperate latitudes. Low-pressure systems in the North Atlantic and North Pacific areas, for example, “inject” air masses into the Arctic at a height of about eight kilometres. This raised the height of the tropopause, the boundary between the troposphere and the stratosphere, in the region of the “injections”. As a result, surface air pressure below rose and a high-pressure system was established. While it dissipated again around ten days later, an unusually high amount of sea ice melted in the interim, and the remaining ice thinned.

The climate scientists’ investigation demonstrated that in the summers of 2007 and 2012, during which these high-pressure situations occurred particularly frequently, they led to cloud-free conditions every third day. The high level of solar radiation intensified and accelerated the melting of the sea ice. “The level of solar radiation is the main factor in the melting of the ice in summer. Unlike with the winter anomaly, the “injected” air at about 8 kilometre altitude from the south is not warm – with minus 60 degrees it’s ice-cold,” says Wernli.

“The air temperature therefore has very little effect on the ice.” Furthermore, the northward transport of warm, humid air masses at the edge of the high-pressure systems reduces (heat) emission, which further intensifies melting.

Their analysis has allowed the researchers to understand the meteorological processes leading to significant variations in summertime ice melt for the first time. “Our results underline the fundamental role that weather systems in temperate latitudes play in episodes of particularly intense ice melt in the Arctic,” says the ETH professor.

###

The paper: https://www.nature.com/articles/s41561-017-0041-0

Role of polar anticyclones and mid-latitude cyclones for Arctic summertime sea-ice melting

Abstract

Annual minima in Arctic sea-ice extent and volume have been decreasing rapidly since the late 1970s, with substantial interannual variability. Summers with a particularly strong reduction of Arctic sea-ice extent are characterized by anticyclonic circulation anomalies from the surface to the upper troposphere. Here, we investigate the origin of these seasonal circulation anomalies by identifying individual Arctic anticyclones (with a lifetime of typically ten days) and analysing the air mass transport into these systems. We reveal that  these episodic upper-level induced Arctic anticyclones are relevant for generating seasonal circulation anomalies. Sea-ice reduction is systematically enhanced during the transient episodes with Arctic anticyclones and the seasonal reduction of sea-ice volume correlates with the area-averaged frequency of Arctic anticyclones poleward of 70° N (correlation coefficient of 0.57). A trajectory analysis shows that these anticyclones result from extratropical cyclones injecting extratropical air masses with low potential vorticity into the Arctic upper troposphere. Our results emphasize the fundamental role of extratropical cyclones and associated diabatic processes in establishing Arctic anticyclones and, in turn, seasonal circulation anomalies, which are of key importance for understanding the variability of summertime Arctic sea-ice melting.

0 0 votes
Article Rating

Discover more from Watts Up With That?

Subscribe to get the latest posts sent to your email.

101 Comments
Inline Feedbacks
View all comments
January 17, 2018 5:00 am

Call=fall.we=sea!!!!

donald penman
Reply to  Ghalfrunt
January 17, 2018 5:08 am

I believe an explanation that I heard was that the Atlantic Oscillation trended positive during this period rather than negative

Griff
January 17, 2018 6:35 am

“The problem is, we’ve really got only a few decades of observations to compare with..”

No, we now have good collated records on arctic sea ice going back to 1850.

RWturner
Reply to  Griff
January 17, 2018 8:56 am

Arctic sea ice data from a variety of historical sources have been synthesized into a database extending back to 1850

http://onlinelibrary.wiley.com/doi/10.1111/j.1931-0846.2016.12195.x/abstract

Usually science deals with empirical data or experiments. Climastrology is a special field, using interpolation of synthesized data.

MarkW
Reply to  Griff
January 17, 2018 9:10 am

In little Griff’s world, a single captains log is the equivalent to a full year of satellite data.

Mihaly Malzenicky
January 17, 2018 6:47 am

The editors of the page may be honored to report such research. This may be the case with the climate alarmist stigma.

RWturner
January 17, 2018 8:49 am

Compression thereby warmed the originally cold air, before it entered the “highway to the Arctic”.

Where did the energy come from to do this? Gravitational potential energy. Quick, someone find me a single climatology paper or even a heat budget diagram that factors in gravitational compression of the atmosphere at all.

Toneb
Reply to  RWturner
January 17, 2018 12:28 pm

“Where did the energy come from to do this? Gravitational potential energy. Quick, someone find me a single climatology paper or even a heat budget diagram that factors in gravitational compression of the atmosphere at all.”

Heating via subsidence in an anticyclone is weather.
Not climate.
Air also cools by expansion on rising.
The two cancel.

TomRude
January 17, 2018 9:30 am

In the winter of 2015/16, something happened that had never before been seen on this scale: at the end of December, temperatures rose above zero degrees Celsius for several days in parts of the Arctic. (…) “We heard about this from the media,” says Heini Wernli, Professor of Atmospheric Dynamics at ETH Zurich.

Not only these experts studying the Arctic get their measurements from… the news, and they really love to stage themselves… But stuff like this is too funny:

Areas of low pressure “inject” air masses into the Arctic
These high-pressure systems developed through an influx of air from temperate latitudes

Sure, 300 hPa warm air pushes 1060 HPa cold air…
Meanwhile reality of atmospheric circulation has been published for a while…
http://ddata.over-blog.com/xxxyyy/2/32/25/79/Leroux-Global-and-Planetary-Change-1993.pdf

Toneb
Reply to  TomRude
January 17, 2018 12:35 pm

“Sure, 300 hPa warm air pushes 1060 HPa cold air…
Meanwhile reality of atmospheric circulation has been published for a while…”

Basic meteorology.

A dome of warm air has anticyclonic curvature.
When “injected” into the Arctic via warm advection an anticyclone is induced.
In short, air aloft flows from warm to cold and turns to the right via Coriolis forming an anticyclone.
Clockwise rotation and induced decent.

Verified by MonsterInsights