Alarmists Gone Wild: Saving the Arctic Sea Ice from Oblivion With… Windmills!

Guest post by David Middleton

From the “Truth is Stranger than Fiction” files…

Windmills

Leave it to a researcher who studies icy moons in the outer solar system to come up with an out-there scheme to restore vanishing sea ice in the Arctic.

Ice is a good insulator, says Steven Desch, a planetary scientist at Arizona State University in Tempe. That’s why moons such as Jupiter’s Europa and Saturn’s Enceladus, among others, may be able to maintain liquid oceans beneath their thick icy surfaces. On Earth, sea ice is much thinner, but the physics is the same. Ice grows on the bottom surface of floating floes. As the water freezes, it releases heat that must make its way up through the ice before escaping into the air. The thicker the ice, the more heat gets trapped, which slows down ice formation. That’s bad news for the Arctic, where ice helps keep the planet cool but global warming is causing ice to melt faster than it can be replaced.

The answer to making thicker ice more quickly? Suck up near-freezing water from under the ice and pump it directly onto the ice’s surface during the long polar winter. There, the water would freeze more quickly than underneath the ice, where it usually forms.

In theory, Desch says, the pumps used for this top-down approach to ice growth could be driven by technology no more sophisticated than the windmills that have long provided water to farms and ranches on the Great Plains.

Desch and colleagues envision putting such pumps on millions of buoys throughout the Arctic. During winter, each pump would be capable of building an additional layer of sea ice up to 1 meter thick over an area of about 100,000 square meters…

[…]

Now is the time to begin detailed designs and build prototypes, Desch says. The Arctic Ocean’s end-of-summer sea ice coverage has decreased, on average, more than 13 percent per decade since 1979. “There’ll be a time, 10 to 15 years from now, when Arctic sea ice will be accelerating to oblivion, and there’ll be political will to do something about climate change,” Desch says. “We need to have this figured out by the time people are ready to do something.”

051317_notebook_sea-ice_inline

Science News

Professor Desch and his colleagues estimate that each ice-making buoy would cost $50,000 (including shipping and handling).  They estimate that it would cost $500 billion to cover 10% of the Arctic Ocean with ice-making buoys…

https://www.youtube.com/watch?v=Ji9qSuQapFY

Ice grows on the bottom surface of floating floes. As the water freezes, it releases heat that must make its way up through the ice before escaping into the air. The thicker the ice, the more heat gets trapped, which slows down ice formation. That’s bad news for the Arctic, where ice helps keep the planet cool but global warming is causing ice to melt faster than it can be replaced.

So… Thicker ice traps more heat (insulation), causing the ice to melt faster, preventing the ice from keeping the planet cool (high albedo).  Makes perfect sense.

“There’ll be a time, 10 to 15 years from now, when Arctic sea ice will be accelerating to oblivion, and there’ll be political will to do something about climate change.  We need to have this figured out by the time people are ready to do something.”

“Accelerating to oblivion”?  Oblivion?

Oblivion

Since we know that the current Arctic sea ice extent is much larger than that of most of the Holocene, “oblivion” is probably not the place to which Arctic sea ice is heading.  If anything, it is returning to normal.  So, I don’t think these ice-making buoys would be the best place to “invest” $500 billion.

The Arctic was probably ice-free during summer for most of the Holocene up until about 1,000 years ago.  McKay et al., 2008 demonstrated that the modern Arctic sea ice cover is anomalously high and the Arctic summer sea surface temperature is anomalously low relative to the rest of the Holocene.

chukchi
Figure 1. “Modern sea-ice cover in the study area, expressed here as the number of months/year with >50% coverage, averages 10.6 ±1.2 months/year… Present day SST and SSS in August are 1.1 ± 2.4 8C and 28.5 ±1.3, respectively… In the Holocene record of core HLY0501-05, sea-ice cover has ranged between 5.5 and 9 months/year, summer SSS has varied between 22 and 30, and summer SST has ranged from 3 to 7.5 8C (Fig. 7). (McKay et al., 2008)

Stranne et al., 2013 demonstrated that the modern day Arctic sea ice extent is more comparable to that of the last Pleistocene glacial stage than to that of the Holocene Climatic Optimum (9,000-5,000 years before present).

Microsoft Word - Arctic sea ice -QSR revised
Figure 2.  Annual mean sea ice thickness for the three different simulations (Panel a) compared with results from published paleo-sea ice studies (Panel b). Black curve: constant surface albedo; red curve: dynamic surface albedo parameterization. The simulation implemented with a dynamic surface albedo parameterization was run from present time and backwards to address the importance of the initial state of the sea ice cover. The annual mean sea ice thickness from this simulation (orange curve) reveals a hysteresis of ∼1000 years. The annual mean insolation at 80°N shown with a stippled curve is based on the algorithm presented by Berger (1978). To compare the results from different paleo-sea ice studies a scale of sea ice concentration was inferred using the approach by Jakobsson et al. (2010). This scale must be considered as highly qualitative because none of the paleo-sea ice proxies provide absolute measures of past sea ice concentrations. The number preceding each bar representing the result of a paleo-sea ice study corresponds to the following references: 1: Hanslik et al. (2010); 2: Cronin et al. (2010); 3: de Vernal et al. (2005); 4: England et al. (2008); 5: Funder et al. (2011); 6: Bennike (2004); 7: Dyke et al. (1996); 8: Vare et al. (2009); 9: Belt et al. (2010); 10: Müller et al. (2012). MY = Multi Year; LF = Land Fast Ice. (Stranne et al., 2013)

 

holocene-1
Figure 3.  The Little Ice Age was one of the two coldest phases of the Holocene in the Arctic.

Funny thing about Science News

1975-03-01
Figure 4. “The Ice Age Cometh.” (Science News, March 1, 1975)

From March 1975 to May 2017, Science News has gone from “the Ice Age cometh” to “Arctic sea ice… accelerating to oblivion”… Ohhhhhh Noooooooo!!!

MrBill
Figure 5. Ohhhhhh Noooooooo!!!

References

Alley, R.B. 2000. The Younger Dryas cold interval as viewed from central Greenland. Quaternary Science Reviews 19:213-226.

Desch, S.  et al. Arctic ice management. Earth’s Future. Vol. 5, January 24, 2017, p. 107. doi: 10.1002/2016EF000410.

McKay, J.L., A. de Vernal, C. Hillaire-Marcel, C. Not, L. Polyak, and D. Darby. 2008. Holocene fluctuations in Arctic sea-ice cover: dinocyst-based reconstructions for the eastern Chukchi Sea. Can. J. Earth Sci. 45: 1377–1397

Stranne C, Jakobsson M, Björk G, 2014 Arctic Ocean perennial sea ice breakdown during the Early Holocene Insolation Maximum. Quaternary Science Reviews 92: 123132.

Featured Image

0 0 votes
Article Rating

Discover more from Watts Up With That?

Subscribe to get the latest posts sent to your email.

185 Comments
Inline Feedbacks
View all comments
observa
May 4, 2017 7:44 am

Houston we have a problem-
http://www.heraldsun.com.au/blogs/andrew-bolt/emergency-another-victorian-power-plant-to-close/news-story/05b4dc6f93e2d035828d9bb334565d4d
Now is the winter of our discontent and I don’t think diverting windmills from their important work in the Arctic is going to help much with the warming down under-
http://anero.id/energy/wind-energy/2017/april
We live in interesting times as a Victorian Labor Government having happily applauded the demise of coal and banned all fracking within the State now scrambles desperately to stop its union mates from bringing forward the bleeding obvious.

Gary Pearse
Reply to  observa
May 4, 2017 8:04 am

It’s the voters in Oz, that need more hardship to figure out what is wrong.

Rah
Reply to  Gary Pearse
May 4, 2017 9:06 am

And they will get it.

Griff
Reply to  observa
May 4, 2017 10:33 am

but also the Victorian govt has put out tenders for grid storage (a cheaper alternative to gas peaking plant)
http://reneweconomy.com.au/storage-boom-victoria-outstrips-south-australia-tender-with-100-proposals-70072/

Patrick MJD
Reply to  Griff
May 4, 2017 6:43 pm

Yes Griff, Victoria is joining SA in the race to the bottom. No jobs in SA, people moving interstate.

hunter
May 4, 2017 8:47 am

It would be my privilege to manage the first $1 billion feasibility study to make this amazing vision a reality. And of course there will need to be at least 4 more studies to bring this amazing new technology into the field test stage. And each stage of this vital study will of course require at least 2x the funding of the previous stage. /sarc

ES
May 4, 2017 9:52 am

There is a lot of information on ice in the Manual of Ice (MANICE) put out by the Canadian Ice Service. It will answer a lot of your questions.
It even describes what a lot of people make fun of and that is what is called Rotten Ice. It is an actual term for ice when it is melting.
Rotten Ice: Ice which has become honeycombed and is in an advanced state of disintegration.
https://www.ec.gc.ca/glaces-ice/default.asp?lang=En&n=2CE448E2-1

May 4, 2017 11:01 pm

Wouldn’t the freezing ice warm up the atmosphere?

Chimp
Reply to  Mario Lento
May 4, 2017 11:02 pm

Yes,