The R. W. Wood Experiment

Guest Post by Willis Eschenbach

Pushed by a commenter on another thread, I thought I’d discuss the R. W. Wood experiment, done in 1909. Many people hold that this experiment shows that CO2 absorption and/or back-radiation doesn’t exist, or at least that the poorly named “greenhouse effect” is trivially small. I say it doesn’t show anything at all. Let me show you the manifold problems with the experiment.

To start with, let me give a curious example of the greenhouse effect, that of the Steel Greenhouse. Imagine a planet in the vacuum of space. A residue of nuclear material reacting in the core warms it to where it is radiating at say 235 watts per square metre (W/m2). Figure 1 shows the situation.

steel greenhouse 1Figure 1. Planet in outer space, heated from the interior. Drawing show equilibrium situation

This planet is at equilibrium. The natural reactor in the core of the planet is generating power that at the planet’s surface amounts to 235 W/m2. It is radiating the same amount, so it is neither warming nor cooling.

Now, imagine that without changing anything else, we put a steel shell around the planet. Figure 2 shows that situation, with one side of the shell temporarily removed so we can look inside.

steel greenhouse 2Figure 2. As in Figure 1, but with a solid steel shell surrounding the planet. Near side of the shell temporarily removed to view interior. Vertical distance of the shell from the surface is greatly exaggerated for clarity—in reality the shell and the shell have nearly the same surface area. (A shell 6 miles (10 km) above the Earth has an exterior area only 0.3% larger than the Earth’s surface area.)

[UPDATE: Misunderstandings revealed in the comments demonstrated that I  lacked clarity. To expand, let me note that because the difference in exterior surface area of the shell and the surface is only 0.3%,  I am making the simplifying assumption that they are equal. This clarifies the situation greatly. Yes, it introduces a whopping error of 0.3% in the calculations, which people have jumped all over in the comments as if it meant something … really, folks, 0.3%? If you like, you can do the calculations in total watts, which comes to the same answer. I am also making the simplifying assumption that both the planet and shell are “blackbodies”, meaning they absorb all of the infrared that hits them.]

Now, note what happens when we add a shell around the planet. The shell warms up and it begins to radiate as well … but it radiates the same amount inwards and outwards. The inwards radiation warms the surface of the planet, until it is radiating at 470 W/m2. At that point the system is back in equilibrium. The planet is receiving 235 W/m2 from the interior, plus 235 W/m2 from the shell, and it is radiating the total amount, 470 W/m2. The shell is receiving 470 W/m2 from the planet, and it is radiating the same amount, half inwards back to the planet and half outwards to outer space. Note also that despite the fact that the planetary surface ends up much warmer (radiating 470 W/m2), energy is conserved. The same 235 W/m2 of power is emitted to space as in Figure 1.

And that is all that there is to the poorly named greenhouse effect. It does not require CO2 or an atmosphere, it can be built out of steel. It depends entirely on the fact that a shell has two sides and a solid body only has one side.

Now, this magical system works because there is a vacuum between the planet and the shell. As a result, the planet and the shell can take up very different temperatures. If they could not do so, if for example the shell were held up by huge thick pillars that efficiently conducted the heat from the surface to the shell, then the two would always be at the same temperature, and that temperature would be such that the system radiated at 235 W/m2. There would be no differential heating of the surface, and there would be no greenhouse effect.

Another way to lower the efficiency of the system is to introduce an atmosphere. Each watt of power lost by atmospheric convection of heat from the surface to the shell reduces the radiation temperature of the surface by the same amount. If the atmosphere can conduct the surface temperature effectively enough to the shell, the surface ends up only slightly warmer than the shell.

Let me summarize. In order for the greenhouse effect to function, the shell has to be thermally isolated from the surface so that the temperatures of the two can differ substantially. If the atmosphere or other means efficiently transfers surface heat to the shell there will be very little difference in temperature between the two.

Now, remember that I started out to discuss the R. W. Wood experiment. Here is the report of that experiment, from the author. I have highlighted the experimental setup.

Note on the Theory of the Greenhouse

By Professor R. W. Wood (Communicated by the Author)

THERE appears to be a widespread belief that the comparatively high temperature produced within a closed space covered with glass, and exposed to solar radiation, results from a transformation of wave-length, that is, that the heat waves from the sun, which are able to penetrate the glass, fall upon the walls of the enclosure and raise its temperature: the heat energy is re-emitted by the walls in the form of much longer waves, which are unable to penetrate the glass, the greenhouse acting as a radiation trap.

I have always felt some doubt as to whether this action played any very large part in the elevation of temperature. It appeared much more probable that the part played by the glass was the prevention of the escape of the warm air heated by the ground within the enclosure. If we open the doors of a greenhouse on a cold and windy day, the trapping of radiation appears to lose much of its efficacy. As a matter of fact I am of the opinion that a greenhouse made of a glass transparent to waves of every possible length would show a temperature nearly, if not quite, as high as that observed in a glass house. The transparent screen allows the solar radiation to warm the ground, and the ground in turn warms the air, but only the limited amount within the enclosure. In the “open,” the ground is continually brought into contact with cold air by convection currents.

To test the matter I constructed two enclosures of dead black cardboard, one covered with a glass plate, the other with a plate of rock-salt of equal thickness. The bulb of a thermometer was inserted in each enclosure and the whole packed in cotton, with the exception of the transparent plates which were exposed. When exposed to sunlight the temperature rose gradually to 65 oC., the enclosure covered with the salt plate keeping a little ahead of the other, owing to the fact that it transmitted the longer waves from the sun, which were stopped by the glass. In order to eliminate this action the sunlight was first passed through a glass plate.

There was now scarcely a difference of one degree between the temperatures of the two enclosures. The maximum temperature reached was about 55 oC. From what we know about the distribution of energy in the spectrum of the radiation emitted by a body at 55 o, it is clear that the rock-salt plate is capable of transmitting practically all of it, while the glass plate stops it entirely. This shows us that the loss of temperature of the ground by radiation is very small in comparison to the loss by convection, in other words that we gain very little from the circumstance that the radiation is trapped.

Is it therefore necessary to pay attention to trapped radiation in deducing the temperature of a planet as affected by its atmosphere? The solar rays penetrate the atmosphere, warm the ground which in turn warms the atmosphere by contact and by convection currents. The heat received is thus stored up in the atmosphere, remaining there on account of the very low radiating power of a gas. It seems to me very doubtful if the atmosphere is warmed to any great extent by absorbing the radiation from the ground, even under the most favourable conditions.

I do not pretend to have gone very deeply into the matter, and publish this note merely to draw attention to the fact that trapped radiation appears to play but a very small part in the actual cases with which we are familiar.

Here would be my interpretation of his experimental setup:

r w wood experiment 2Figure 3. Cross section of the R. W. Wood experiment. The two cardboard boxes are painted black. One is covered with glass, which absorbs and re-emits infrared. The other is covered with rock salt, which is transparent to infrared. They are packed in cotton wool. Thermometers not shown.

Bearing in mind the discussion of the steel greenhouse above, I leave it as an exercise for the interested reader to work out why this is not a valid test of infrared back-radiation on a planetary scale … please consider the presence of the air in the boxes, the efficiency of the convective heat transfer through that air from the box to the cover plates, the vertical temperature profile of that air, the transfer of power from the “surface” to the “shell” through the walls of the box, and the relative temperatures of the air, the box, and the transparent cover.

Seems to me like with a few small changes it could indeed be a valid test, however.

Best regards,

w.

0 0 votes
Article Rating

Discover more from Watts Up With That?

Subscribe to get the latest posts sent to your email.

735 Comments
Inline Feedbacks
View all comments
Shawnhet
February 18, 2013 8:22 am

Greg House says:
February 17, 2013 at 10:58 pm
“To questions, there is no obligation to answer them. Besides, you can simply make your point and people will or will not comment on it.”
I agree with this. My problem was with your garbling my questions in an attempt to make it seem as though you have answered those questions.
“To your point “the radiative properties of the atmosphere (which you apparently don’t disagree with) are still relevant regardless of what Wood’s experiment showed about surface temps”, I care primarily about “greenhouse effect” as presented by the IPCC, because it is politically relevant, and it is about the surface temperatures. Luckily, the Wood experiment debunked it.
If you want to talk about things irrelevant to the surface temperatures and thus also irrelevant to the “greenhouse effect” as presented by the IPCC, it is perfectly fine with me, but you can not really expect me to participate in that.”
The trouble with your argument above is that you simply do not understand the issues involved well enough to draw the conclusions you do from it.
Richard Lindzen ( a prominent skeptic) states that “the surface of the earth does not cool primarily by thermal radiation” as part of his discussion of why the GH effect is real on this link. IOW, the fact that the surface cools differently from the atmosphere as a whole does not invalidate the GH effect.
http://heartland.org/policy-documents/taking-greenhouse-warming-seriously
The problem is not so much that you are wrong, but that simultaneously you are (quite arrogantly) convinced that you are right before studying these issues. My advice is to start with the radiative properties of CO2 and other gases, read Lindzen’s paper, think about it and then see where you stand at the end of the day. Your objections are what are irrelevant in this discussion but no one besides you can make you accept this.
Cheers, 🙂

February 18, 2013 12:44 pm

Lindzen doen’t even understand the basics.
He seem to be under the impression that the atmospheric emission height can increase without any preceding temperature increase. Merely by the addition of GHG’s. Yet there are multiple sources of empirical data that show this is utter nonsense.
The radiosonde data for example clearly show that any increase in emission height is always preceded by an increase in temperature.
He also clings the false assumption that water vapour is a positive feedback mechanism. It isn’t, water vapour is strongly negative.
These are just two obvious points where he is so far from reality that it just beggars belief.
It is safe to say that anything Linzen has to say about the so called “greenhouse effect” is not of any consequence.

February 18, 2013 12:52 pm

Will,
Don’t destroy your credibility by saying, “Lindzen doen’t even understand the basics.”

February 18, 2013 3:34 pm

D.B. Stealey says:
February 18, 2013 at 12:52 pm
OK what I meant to say was, Lindzen doesn’t even understand the basics.
Typo, my bad!

February 18, 2013 3:53 pm

Will,
I think Prof Lindzen has as much understanding as anyone in the field [scroll down].
(And my comment was about credibility, not about spelling.)

February 18, 2013 4:34 pm

[Will – I’ve told you before, you are BANNED from this website for constantly trying (via thread bombing) to put your garbage science experiment on this website, doubly so today when you call Lindzen a liar. Be as upset as you wish, but don’t come back here – Anthony Watts]

1 27 28 29
Verified by MonsterInsights