I remember during my tour of Australia last year, when our talk was rudely interrupted by the king of reef madness, Ove Hugh-Guldberg, my co-presenter David Archibald quipped from the dais, paraphrasing Samuel Johnson, that “ocean acidification is the last refuge of the global warming scoundrel.”
Today’s scare story about oysters disappearing due to atmospheric induced ocean acidification is a perfect example of this.
We see this terrifying headline from Yale 360 environmental forum today:
Massive Oyster Die-offs Show Ocean Acidification Has Arrived
The claim is right out of the “ocean acidification is going to kill the entire food chain” playbook, bolding mine:
But this rural coastal spot and the shellfish it has nurtured for centuries are a bellwether of one of the most palpable changes being caused by global carbon dioxide emissions — ocean acidification.
It was here, from 2006 to 2008, that oyster larvae began dying dramatically, with hatchery owners Mark Wiegardt and his wife, Sue Cudd, experiencing larvae losses of 70 to 80 percent. “Historically we’ve had larvae mortalities,” says Wiegardt, but those deaths were usually related to bacteria. After spending thousands of dollars to disinfect and filter out pathogens, the hatchery’s oyster larvae were still dying.
Finally, the couple enlisted the help of Burke Hales, a biogeochemist and ocean ecologist at Oregon State University. He soon homed in on the carbon chemistry of the water. “My wife sent a few samples in and Hales said someone had screwed up the samples because the [dissolved CO2 gas] level was so ridiculously high,” says Wiegardt, a fourth-generation oyster farmer. But the measurements were accurate. What the Whiskey Creek hatchery was experiencing was acidic seawater, caused by the ocean absorbing excessive amounts of CO2 from the air.
The only thing missing is equating oysters to canaries in coal mines. A typical staple of such types of stories. Bellwether was used instead, but you get the idea.
When you have a look at who’s writing this, you see a pattern:
Elizabeth Grossman is the author of Chasing Molecules: Poisonous Products, Human Health, and the Promise of Green Chemistry, High Tech Trash: Digital Devices, Hidden Toxics, and Human Health, and other books. Her work has appeared in Scientific American, Salon, The Washington Post, The Nation, Mother Jones, Grist, and other publications.
In nutshell, with a publication record like that, I wouldn’t trust this woman with any sort of factual writing anymore than I’d trust activist Bill McKibben. So, I went looking to see if her claims held up. It didn’t take long to discover that her claim of “…acidic seawater, caused by the ocean absorbing excessive amounts of CO2 from the air…” was totally bogus.
First I decided to have a look at the Whiskey Creek oyster hatchery itself. It seems it has been touted as a success story:
Note that they are using tanks, with seawater drawn in from the estuary. Grossman bemoans the fact that the water has to be treated for use in the aquaculture tanks. Apparently, atmospheric induced ocean acidification is happening so fast that they just can’t keep up:
The situation at the hatcheries has improved substantially in the past couple of years, thanks largely to an ongoing, intensive scientific monitoring effort and to measures to control the pH of seawater in the tanks where oyster larvae are raised. But ocean acidification continues apace, which makes understanding what’s been happening to Whiskey Creek oysters vital to grasping what will eventually threaten every ocean organism that builds a shell or coral branch.
Yes, it’s relentless and all that. The world’s oceans depend on what’s happening in some aquaculture tanks in Oregon. /sarc
Trying to get past the wailing and gnashing of teeth over some oyster larvae that didn’t make it out of the tanks, we find the source of the issue isn’t new, and was highlighted in a 2009 report at the Pacific Coast Shellfish Growers Association:
http://www.pcsga.org/pub/science/Emergency_Seed_Proposal_Indesign-1.pdf
Emergency Plan to Save Oyster Production on the West Coast
January, 2009
A Collaborative Proposal Prepared by the Pacific Coast Shellfish Growers Association, Whiskey Creek Hatchery, Taylor Hatchery, Pacific Shellfish Institute, Willapa-Grays Harbor Oyster Growers Association, Lummi Indian Tribe Hatchery, U.S. Department of Commerce (NOAA Aquaculture Program), Northwest Fisheries Science Center (NOAA), U.S. Department of Agriculture (ARS and CSREES), Oregon State University, AquaTechnics, Inc., and the Nature Conservancy
The Problem:
For the past three years, water quality conditions in the Pacific Ocean off the Oregon and Washington coasts; and adjacent highly productive estuaries including Puget Sound, Willapa Bay, and Netarts Bay, have severely impacted hatchery production of seed oysters upon which both large and small farms depend. Simultaneously, wild sets of oyster seed that make up the back-bone of the oyster industry in Willapa Bay, the single largest oyster producing region on the West Coast, have been virtually non-existent for the past four years.
These conditions have led to dire economic consequences for two of the four hatchery operators that produce oyster seed for farmers, including the largest producer of oyster larvae on the West Coast, Whiskey Creek Hatchery, which accounts for approximately 75% of all larvae utilized by farmers. The environmental conditions contributing to the lack of wild seed set presents an even more challenging problem.
So yes, there’s a real problem, but the issue that’s bogus is the claimed cause: “…acidic seawater, caused by the ocean absorbing excessive amounts of CO2 from the air…”
Um, no. From the same 2009 report, bolding mine:
Identified water quality/hatchery problems:
Shellfish hatcheries have historically used coarsely filtered but otherwise untreated seawater for larval culture with few problems, and larval shellfish have thrived in water in the Pacific Ocean and coastal estuaries. Upwelling of deep, cold, nutrient-rich water from the continental shelf off the coast of Oregon and Washington is typical during summer months in this region and drives high primary productivity.
Since 2003, however, higher than normal upwelling increased the extent and intensity of intrusions of deep acidic, hypoxic water off the Oregon and Washington coasts, and contributed to the formation of persistent dead zones. These events have resulted in fundamental changes in the character of our coastal bays, which contribute to high larval mortality throughout the entire year.
These fundamental changes in seawater quality influence a host of complex chemical interactions, many of which are not fully understood. However, recent research has identified at least four potential stressors that adversely affect shellfish larvae:
• Larval and juvenile shellfish are highly sensitive to acidic (low pH) seawater because their shells are formed from calcium carbonate, and dissolves when pH is low.
• Because this hypoxic and relatively acidic up-welled water is coming from deep basins and is cold (8 – 10 oC), it is saturated with dissolved gases such as carbon dioxide and nitrogen while at the same time being low in oxygen as a result of biological decomposition in the benthic zone. When hatcheries heat this gas-saturated seawater to 25 – 28 oC in order to meet the temperature requirements of young shellfish, the seawater becomes super-saturated. Preliminary experiments indicate that oyster larvae are very sensitive to gas super-saturation under these conditions.
• A third problem for shellfish hatcheries is the recent increase in the prevalence of a pathogenic bacterium (Vibrio tubiashii or Vt) that seems to out-compete other, more benign species in this distorted environment. Vt infections are lethal to shellfish larvae and juveniles. High levels of mortality in shellfish hatcheries and in the wild have been associated with high levels of Vt in 2006, 2007, and intermittently in previous years, such as in 1998 when environmental conditions favored disease outbreaks.
• There is potential for further stress to oyster seed given the difference between water conditions in the hatcheries where larvae are produced, and quality of water found in the remote settings where larvae set onto cultch (“mother shell”) are planted in the natural environment for grow-out.
So, in summary the causes are:
1. Deep water upwelling, bringing colder more CO2 saturated water to the surface is the root cause. Colder water holds more CO2, it is basic chemistry.

That deep benthic ocean water doesn’t interact with the atmosphere, but it is brought to the surface by changes in ocean current patterns such as ENSO and the Pacific Decadal Oscillation, which have nothing to do with the small (20 Parts Per Million) global increase in atmospheric CO2 in the last decade.
2. Heating of the water to make it suitable for tank aquaculture. They get the soda pop bottle on a warm day effect. The oyster larvae don’t like that. No surprise there.
3. A periodic pathogenic bacterium Vibrio tubiashii which seems to follow ocean patterns. What happened in 1998? Oh yeah, the biggest El Niño in modern times.
4. Stress with relocation into a different water environment. Anybody who has ever bought tropical fish, especially salt water fish, knows this problem.
It seems “…acidic seawater, caused by the ocean absorbing excessive amounts of CO2 from the air…” isn’t in this report.
Let’s have a look at the current ocean surface temperatures around Oregon:
It seems Oregon is smack dab in the middle of a double whammy right now of La Niña and cold phase of the PDO. Recall that in 2008, just before the “Emergency report” was prepared by the Pacific Coast Shellfish Growers Association there was also a deep La Niña in the Pacific. What did it look like then? Have a look:
Yep, colder. No surprise there.
For completeness I should note there’s a mention of “global warming induced ocean acidification” in the report, but it is ancillary and not listed as a direct cause of the current oyster aquaculture crisis in Oregon.
These adverse environmental conditions – low pH, gas super-saturation, high Vt infections, and the associated complex effects on seawater chemistry – constitute a “perfect storm” for Pacific Northwest shellfish hatcheries and growers that depend on natural set oyster seed, bringing the industry to the brink of collapse. It is not understood how these, and likely other, stressors interact, but it is clear that these factors are somehow combining to decimate shellfish larvae and juveniles. To further illustrate the seriousness of the situation, oceanographers such as Dr. Richard Feely, world-renowned NOAA expert on ocean acidification and global warming, predicts that oceanic conditions will not improve in the near term, potentially rendering shellfish hatcheries inoperable. This, combined with lack of wild seed set, will lead to the collapse of the oyster industry unless mitigation measures are developed and implemented immediately.
Feely’s opinion in this WWF document on ocean acidification seems to be a centered around the weasel word “could”, and concerns the future, rather than the present:
“…ocean acidification could affect some of the most fundamental biological and chemical processes of the sea in coming decades.”
So apparently, the Yale 360 headline claim of Massive Oyster Die-offs Show Ocean Acidification Has Arrived doesn’t agree with the position of the NOAA scientist on the issue.
I wonder though, why a World Wildlife Fund document exists on a NOAA server:
http://www.pmel.noaa.gov/co2/files/thecircle0410.pdf
Given all the tarnish that WWF has put on IPCC in scandal after scandal, I wonder if the Pacific Marine Environmental Laboratory (where Feely works) has also been similarly compromised by deep pocket eco-activism.
And of course the whole Yale 360 article by Elizabeth Grossman is bogus, not only for the fact that the changes in CO2 in the water at Whiskey Creek are driven by changes in ENSO, PDO, and cold water upwelling, but also because what happens in treated aquaculture tanks is not the ocean.
Green might be a good color, but it is also the color of bogus science claims affected by activism these days.
Discover more from Watts Up With That?
Subscribe to get the latest posts sent to your email.

![lanina02-2008[1]](http://wattsupwiththat.files.wordpress.com/2011/11/lanina02-20081.png?resize=520%2C283&quality=75)
Living in one of the largest oyster harvesting states, we have been hearing about the decline in oysters for many years. However, none was (to date) blamed on ocean acidity. A lot was blamed on fresh water (in watery years when the bay became less salty) and MSX and Dermo – 2 parasites that LOVE oysters.
I sailed the oceans for 43 years, and for a lot of that time we carried out ph tests on the sea water. In all that time I never saw a quantifiable change in ph measurements. This is just junk science.
Arm and Hammer, a decent UV, and an off gassing tower…………….
Standard equipment in any decent hatchery
Seems like they have their causation chain reversed.
Rather than blaming the high CO2 content of deep upwelling ocean water on anthropogenic atmospheric CO2, somebody should be figuring out what impact this CO2 rich fossil water is having on atmospheric CO2 …
Not gonna hold my breath wating for that one. To do so would risk hypoxia and plasma acidification, which some idiot would them blame on ‘global warming’.
Oh My, the Juan de Fuca Ridge had best be banned. All those nasty, acidic, suphide-rich brines spilling into the abyss.
Anthony, a lovely piece of research. This is why this site works so well, because it reports, with full links to reports and data, the contemporaneous work people go through to track down and pull the props out from under this kind of nonsense. Yale360 is often nothing but hysteria. If I were Yale I’d at least require a) transparency and b) traceable citations for their claims. Not a handwave at the IPCC report, but chapter and verse. Academic freedom is one thing. Codswollop is another.
w.
JJ says:
November 21, 2011 at 1:02 pm
Seems like they have their causation chain reversed.
Rather than blaming the high CO2 content of deep upwelling ocean water on anthropogenic atmospheric CO2, somebody should be figuring out what impact this CO2 rich fossil water is having on atmospheric CO2 …
========================
good point JJ……………………..
“at the same time that scientists have been measuring alarmingly corrosive water along the Pacific coast.”
Wow, so when seawater approaches neutrality from a higher pH it becomes alarmingly corrosive??
Maybe I missed it (and I’m too queasy to read it again) but, other than the graph from Hawaiian waters where the lowest measured pH is around 8.08, did they ever give any pH values?? Ooooopsie, maybe too many people know that above pH 7, it ain’t acidic.
Instead of posting about everything these guys get wrong, just post about what they get right.
Oh, never mind. You wouldn’t have anything to write about.
Great detective work Anthony. You must be getting tired of debunking the disinfo after five years, so thankyou.
I wonder if Mauna Loa will be showing the increase in CO2 or just the usual straight line?
Many scientists argue that numerous changes in the oceans, a consequence of reducing the amount of salt in them.
Another chemophobic anti-science homeopath quack doctor
I don’t know how this Grossman person is and what her qualifications are reported to be. If this is any example of the work provided to get what ever degree or diploma she as the granting institution(s) should demand the paper back. Yale 360 are we talking the university or the lock manufacturing company?
Great work Anthony.
I’d add that the Whiskey Creek Shellfish Hatchery is 3.5km from the ocean on an estuary of what appears to be a small short river.
Rivers can vary greatly in their PH. And the PH of a single river can vary for many reasons, some seasonal, some caused by agricultural or other land use practices.
There could well be some riverine effect at work as well.
Maybe people interested in oysters should read what is happening on the East Coast. The Chesapeake Bay and its tributaries have long been sources of oyster harvests. The last few decades, though, the oysters began declining. Now for the good news—thanks to the Army Corps of Engineers and the Virginia Institute of Marine Science, oysters are making a strong comeback.
Here are links to a couple of articles on the recovery of oyster beds in the Great Wicomico. It is an amazing story.
http://www.nytimes.com/2009/08/04/science/04oyster.html
And.
http://www.vims.edu/newsandevents/topstories/tall_reefs.php
Here’s a quote from the VIMS site:
“The Great Wicomico’s re-established population, which the researchers estimate at 184.5 million oysters, is the largest of any native oyster population worldwide. The restored population, which exists on 86.5 acres of reefs, is roughly equivalent to the entire oyster population on all of Maryland’s 270,000 acres of public oyster grounds. The authors calculate that it is 57-times larger than the pre-restoration population; far exceeding the Chesapeake Bay Program’s previously unachieved restoration goal of a 10-fold increase of the 1994 baseline by 2010.”
I especially like how they estimate the population to four decimal places!
Both have film clips worth watching.
JJ says
Rather than blaming the high CO2 content of deep upwelling ocean water on anthropogenic atmospheric CO2, somebody should be figuring out what impact this CO2 rich fossil water is having on atmospheric CO2 …
——-
But they are not saying the high CO2 content is due to man-made CO2. That deep ocean CO2 could be decades to centuries old.
Where’d the salt go?
The human hating scaremongers will throw any anthropogenic hysteria then can at the wall and hope it sticks.
The arrogance is breathtaking. Earth and the Sun are in control. We are essentially non-existent on the planet surviving in but a tiny percentage of habitable area, and they try to tell us that we have as profound an impact as a Sun or the Pacific ocean. BS. Pure and simple.
If you need a reason to vote R in 2012. This is one of many.
I agree that linking the oyster fisheries problems to AGW is wrong.
But does skeptic land now agree:
1. that decreased pH can affect shellfish growth
2. that deep ocean waters can have a sufficiently low pH to affect shell fish growth
Or do you still want to hang off on that one just to be perverse?
On page 11 of thecircle0410.pdf is a graph showing increasing CO2 and the decreasing Ocean pH, or rather decreasing Alkalinity. The left hand scale of pH 0.15 is quite fine and if projecting the graph out a neutral pH is not reached until around 2230. So the oceans will become Acidic in around 2230, after they have passed through neutral. However, if the projected pattern of change is correct, then the rate of pH change will become vertiginous, especially after 2150 when it passes pH 7.65 and carries on down to pH7.0 in about 80 years. With this rate of change it will become academic whether it is Alkaline or Acidic. Is this what will happen and how reliable is it projecting graphs out into the future? Isn’t that what was done just prior to the current economic disaster?
You can understand the need for alarmist articles. The troops morale must be way down with failure after failure of projections based on dodgy science and bad models. The climate appears to be quite natural and the Chinese think man has very little to do with any change. CO2 was touted as the worlds worst enemy so it must have some effect somewhere, why not the ocean?
I was just looking at sks to see whether they parrot the oyster meme; they don’t, but I found something quite amusing. One of those old cybernetic diagrams that are prone to chaotic oscillations, Fig. 4 on this page:
http://www.skepticalscience.com/more_wind_and_waves.html
“Our findings demonstrate that shifts in climate-driven disturbances that affect foundation species are likely to have impacts that cascade through entire ecosystems.”
Yeah, you can have a lot of fun with these diagrams. I thought they went extinct in the 80ies.
Academia is such a timeless hellhole.
So, essentially, in the real world it is actually man’s sticky fingers for trying to manipulate nature for profit and so because the profit is the most important thing, why not blame it on man made global warming and try and rake in profit from new revenue streams.
LazyTeenager says:
November 21, 2011 at 1:45 pm
“But they are not saying the high CO2 content is due to man-made CO2. That deep ocean CO2 could be decades to centuries old.”
Let me help you.
“Massive Oyster Die-offs Show Ocean Acidification Has Arrived […]
But this rural coastal spot and the shellfish it has nurtured for centuries are a bellwether of one of the most palpable changes being caused by global carbon dioxide emissions — ocean acidification.”
Lazy teenager,
Do you think the ocean surface waters will ever get hypoxic and super saturated from atmospheric CO2?
I hope I’m not insulting your work ethic by asking.