It's Not About Feedback

Guest Post by Willis Eschenbach

The current climate paradigm believed by most scientists in the field can be likened to the movement of balls on a pool table.

Figure 1. Pool balls on a level table. Response is directly proportional to applied force (double the force, double the distance). There are no “preferred” positions—every position on the table is equally attainable and probable.

The current climate paradigm is as linear and as mechanistic as that pool table. At its heart is the belief that the controlling equation for the future evolution of the climate is:

Forcing Change of 3.7 watts/metre^2 = 3°C Surface Temperature Change

This can also be written as:

∆T = λ ∆Q

where ∆Q is the change in forcing, ∆T is the change in temperature, and lambda (λ) is the climate sensitivity of 3°C / 3.7 w/m2 = 0.8 degrees C for each additional watt/m2 of forcing.

Everything else is claimed to average out, leaving only that relationship. The ratio between the imposed forcing and the supposed resulting temperature change is assumed to be a constant, called the “climate sensitivity”. There is much discussion as to the value of the climate sensitivity, which swirls around whether there is net positive or negative feedback from things like clouds and water vapor. According to the prevailing theory and equation, if the climate sensitivity is high, a small forcing change is said to cause a larger temperature change, and vice versa.

Me, I don’t believe that equation one bit. I discussed problems with the equation in “The Cold Equations“. For me, the idea that surface air temperature slavishly follows forcing goes against everything I know about complex natural flow systems. I cannot think of any complex natural flow system which is linear in that manner with respect to its inputs. I find it completely astounding that people actually believe that the global climate system, with all of its intricate feedbacks and forcings and resonances and chaotic nature, is that linearly simple. But that is the current paradigm for the climate, a completely linear system.

I am neither a climate sceptic, nor an AGW believer, nor an agnostic on the subject. Instead, I am a climate heretic. I think that the dominant climate paradigm is completely incorrect. I hold that there is no level pool table. I say that there is no constant “climate sensitivity”. Instead, there are preferred states. I say, and have discussed elsewhere, that the temperature of the Earth is kept within a fairly narrow range through the action of a variety of natural homeostatic mechanisms.

So what is a homeostatic mechanism when it’s at home?

The concept of “homeostat” is a more general version of the word “thermostat”. A thermostat keeps temperature the same. A homeostatic mechanism keeps something the same. A familiar version is the “cruise control” of a car, which keeps the car’s speed the same. Per Wikipedia, homeostasis is “the property of a system, either open or closed, that regulates its internal environment and tends to maintain a stable, constant condition.” Not a bad definition. It is a natural governor which regulates some aspect of the system.

The first thing to understand about climate homeostasis is that it has nothing to do with feedback. This is because in general the controlling mechanism involves a regime shift, rather than a variation in some feedback value. The current furore about the exact level of feedback in the system, while interesting, is not directly relevant, as variations in feedback are not a feature of the control mechanism.

To see why the control mechanism regulating the earth’s temperature does not involve feedback, here is the evolution of the day and night in the tropical ocean. The tropical ocean is where the majority of the sun’s energy enters the huge heat engine we call the climate. So naturally, it is also where the major homeostatic mechanism are located.

At dawn, the atmosphere is stratified, with the coolest air nearest the surface. The nocturnal overturning of the ocean is coming to an end. The sun is free to heat the ocean. The air near the surface eddies randomly.

Figure 2. Average conditions over the tropical ocean shortly after dawn. 

 As the sun continues to heat the ocean, around ten or eleven o’clock in the morning there is a sudden regime shift. A new circulation pattern replaces the random eddying. As soon as a critical temperature/humidity threshold is passed, local circulation cells spring up everywhere. These cells transport water vapor upwards to the local lifting condensation level. At that level, the water vapor condenses into clouds as shown in Figure 3.

Figure 3.  Average conditions over the tropical ocean when cumulus threshold is passed. 

Note that this area-wide shift to an organized circulation pattern is not a change in feedback. It has nothing to do with feedback. It is a self-organized emergent phenomenon. It is threshold-based, meaning that it emerges spontaneously when a certain threshold is passed. In the “wet” deep tropics there’s plenty of water vapor, so the major variable in the threshold is the temperature.

Under the new late-morning cumulus circulation regime, much less surface warming goes on. Part of the sunlight is reflected back to space, so less energy makes it into the system to begin with. Then the increasing wind due to the cumulus-based circulation pattern increases the evaporation, reducing the surface warming even more by moving latent energy up to the lifting condensation level.

Note that the system is self-controlling. If the ocean is a bit warmer, the new circulation regime starts earlier in the morning, and cuts down the total daily warming. On the other hand, if the ocean is cooler than usual, clear morning skies last later into the day, allowing increased warming. The system is regulated by the time of onset of the regime change.

Let’s stop at this point in our examination of the tropical day and consider the idea of “climate sensitivity”. The solar forcing is constantly increasing as the sun rises higher in the sky. In the morning before the onset of cumulus circulation, the sun comes through the clear atmosphere and rapidly warms the surface. So the thermal response is large, and the climate sensitivity is high.

After the onset of the cumulus regime, on the other hand, much of the sunlight is reflected back to space. Less sunlight remains to warm the ocean. In addition to reduced sunlight there is enhanced evaporative cooling. Compared to the morning, the climate sensitivity is much lower. The heating of the surface slows down.

So here we have two situations with very different climate sensitivities. In the early morning, climate sensitivity is high, and the temperature rises quickly with the increasing solar insolation. In the late morning, a regime change occurs to a situation with much lower climate sensitivity. Adding extra solar energy doesn’t raise the temperature anywhere near as fast as it did earlier.

So climate sensitivity varies … which means, of course, that the constant “temperature sensitivity” that they claim exists must be an average temperature sensitivity. Fair enough, let’s take a look at how that works.

Suppose the early morning regime and the late morning regime are the same length, maybe three hours each. In that case we take the simple mathematical average. But here’s the problem. As noted above, when it’s warm the cumulus circulation starts up earlier than usual. More hours of cumulus means lower sensitivity.

On the other hand, when the ocean is cooler than usual, the clear skies prevail for more of the morning. As a result, the average climate sensitivity rises.

In other words, in the all-important tropical region, climate sensitivity is not a constant in any sense. Instead, it varies inversely with temperature.

Moving along through the day, at some point in the afternoon there is a good chance that the cumulus circulation pattern is not enough to stop the continued surface temperature increase. When the temperature exceeds a certain higher threshold, another complete regime shift takes place. Some of the innocent cumulus clouds suddenly mutate and grow rapidly into towering monsters. The regime shift involves the spontaneous generation of those magical, independently mobile heat engines called thunderstorms.

Thunderstorms are dual-fuel heat engines. They run on low-density air, air that rises, condenses out the moisture and rewarms the air, which rises deep into the troposphere.

Figure 4. Afternoon thunderstorm circulation over the tropical ocean.

There are a couple of ways to get low density air. One is to heat the air. This is how a thunderstorm gets started, as a strong cumulus cloud. The sun plus GHG radiation combine to heat the surface, warming the air. The low density air rises. When that gets strong enough, a thunderstorm starts to form.

Once the thunderstorm is started, the second fuel is added to the fire — water vapor. Counter-intuitively, the more water vapor there is in the air, the lighter it becomes. The thunderstorm generates strong winds around its base. Evaporation is proportional to wind speed, so this greatly increases the local evaporation.

This, of course, makes the air lighter, and makes the air rise faster, which makes the thunderstorm stronger, which in turn increases the wind speed around the thunderstorm base, which increases the evaporation even more … a thunderstorm is a regenerative system like a fire where part of the energy is used to run a bellows to make the fire burn even hotter.

This gives thunderstorms a unique ability that, as far as I know, is not represented in any of the climate models. It is capable of driving the surface temperature well below the temperature that was needed to get it going. It can run on into the evening, and at times well into the night, on its combination of thermal and evaporation energy sources.

Thunderstorms can be thought of as local leakages that transport heat rapidly from the surface to the upper atmosphere. They cool the surface in a host of ways, utilizing a combination of cold water, shade, wind, spray, evaporation, and cold air.

And just like the onset of the cumulus circulation, the onset of thunderstorms occurs earlier on days when it is warmer, and it occurs later (and sometimes not at all) on days that are cooler than usual.

So again, we see that there is no way to assign an average climate sensitivity. The warmer it gets, the less each additional watt per metre actually warms the surface.

Even what I describe above doesn’t exhaust the variety of self-organization to decrease incoming sunlight and move more energy aloft. If the day continues to warm, the thunderstorms self-assemble into long, long rows of thunderstorms called “squall lines” (not illustrated). Between these long lines of thunderstorms there are equally long areas of clear descending air. Instead of the regime of individual “doughnut-shaped” circulation around each thunderstorm and cumulus cloud, it has all been replaced by long cylinders of air which sink in the valleys between the serried rows of thunderstorms, and rise up through their centers. This increases the rate at which the energy can be moved from the surface and converted into work.

Like all of the regime shifts, the change from individual tropical thunderstorms to squall lines is temperature dependent and threshold based. It occurs at the warmest temperatures.

Finally, once all of the fireworks are over, first the cumulus and then the thunderstorms decay and dissipate. A final and again different regime ensues. The main feature of this regime is that during this time, the ocean radiates about the amount of the energy that it absorbed during all of the previously described regimes.

Figure 5. Conditions prevailing after the night-time dissipation of the daytime clouds.

During the nighttime, the surface is still receiving energy from the GHGs. This has the effect of delaying the onset of oceanic overturning, and of reducing the rate of cooling. However, because there are no clouds, the ocean can radiate to space more freely. In addition, the overturning of the ocean constantly brings new water to the surface, to radiate and to cool. This increases the heat transfer across the interface.

As with the previous thresholds, the timing of this final transition is temperature dependent. Once a critical threshold is passed, oceanic overturning kicks in. Stratification is replaced by circulation, bringing new water to radiate, cool, and sink. In this way, heat is removed, not just from the surface as during the day, but from the body of the upper layer of the ocean.

And as mentioned above, by dawn the combined effect of clear skies and oceanic overturning has lost all of the heat of the previous day, and the cycle starts over again.

So let me recap.

1. There are a series of temperature thresholds in the tropics, each of which when crossed initiates a completely new circulation regime. In order of increasing temperature, these are the thresholds for cumulus formation, thunderstorm formation, and squall line formation.

2. The time of crossing of each temperature threshold depends (on average) on whether the local area is warmer or cooler than usual. As a result, the entire system is strongly homeostatic, tending to maintain the temperature within a certain range.

3. Feedback does not play any significant part in this temperature control system. Nor do small changes in the forcings. The system adjusts by means of the timing. The various regime change occur either earlier or later in the day (or not at all), to maintain the temperature.

4. In each of these separate regimes, the climate sensitivity  is quite different.

5. The climate sensitivity for the tropical ocean varies inversely with the temperature.

My conclusion from all of this is that the climate, like other flow systems far from equilibrium, contains homeostatic mechanisms. One effect of these mechanisms is that the tropical temperature is constrained to remain within a fairly narrow range.

And that’s why I describe myself as a climate heretic. I think the earth has a thermostat, one that is not represented in any of the current generation of climate models. I don’t think that climate is linear. I think that climate sensitivity is not a constant at all, but is a function of temperature. And to return to the title of the post, I think that the debate should not be about feedback at all, it should be a debate about the types and the effects of the various natural homeostatic mechanisms.

And all of those are definitely heresies to the latest IPCC Council of Nicean Climate …

My best to all,

w.

0 0 votes
Article Rating

Discover more from Watts Up With That?

Subscribe to get the latest posts sent to your email.

226 Comments
Inline Feedbacks
View all comments
Theo Goodwin
August 14, 2011 8:19 am

What I find most important about Willis’ work is that he has provided a clear example of the physical science that must be undertaken if we are to understand how temperature (heat exchange) interacts with other environmental factors. This knowledge can take us down the path of discovering the environmental factors that control temperature. Of course, Willis’ physical hypotheses are neither quantitative nor complete for the obvious reason that a large research program would be necessary to test them and refine them.
If you have lived in the tropics for a number of years (or out of the tropics as far north as central Florida) and you are fascinated by nature, you can give testimony to the existence of the natural pattern that Willis describes. Using a homeostatic mechanism as the basis for description of the mechanism underlying this pattern makes perfect sense and is a good starting point.
There are some objections. I would not use the word ’emergent’ and would instead use the phrase ‘threshold phenomenon’. The word ’emergent’ suggests that the characteristics of the phenomenon described are not real but express an underlying reality. We should not follow the Gaia Modelers into metaphysics.
Some have objected that billions of little homeostatic cells would be too difficult to model. Forget the models and do physical science. Use Willis’ starting point to create a refined set of hypotheses that can be used for prediction. Then randomly select environments and see if the predictions hold in all of them. That traditional technique of physical science is far superior to computer modeling.
Others have suggested that such homeostatic phenomena require the investigator to accept the claim that climate science is chaotic or something like chaotic. Excuse me, but the behavior of homeostatic phenomena is deterministic and fits the traditional model of physical science perfectly. The fact that there might be billions of these cells changes nothing.
Some have wondered how ice ages could have occurred if temperature is maintained by homeostatic phenomena. Willis’ hypotheses do not apply to Earth’s entire atmosphere. Once you leave the tropics, other mechanisms might come into play. To my mind, the biggest failure of climate science is that they insist on making assumptions needed by their Gaia Models. Their broad assumptions simply trash the empirical phenomena that they claim to study.
Some have objected that Willis is changing the definition of “feedback.” Such a change is unavoidable. Willis is using physical hypotheses to describe natural regularities in our humanly observable environment. Definitions of “feedback” in use by climate scientists today are limited to Arrhenius’ equations and to computer models. Someone who has done work along the lines suggested by Willis, someone like Roger Pielke Sr who has done considerable work on land use changes, might be called upon to explain how best to define “feedback.”
In conclusion, Willis’ program is strictly within the confines of physical science as it has been practiced since Galileo. Everyone should learn from the example that Willis has given us.

August 14, 2011 8:20 am

“….it should be a debate about the types and the effects of the various natural homeostatic mechanisms.”
Well, they can’t. One would have to identify all of the mechanisms first. And, I think that task would be rather impossible. That stated, it would be nice if a few climatologists would acknowledge our limitations in understanding our climate.
Loved the pool analogy. While, our climatologists are stuck in linear thoughts, even the pool table creates seemingly unsolvable problems. And that’s only one a plane! I seriously doubt a climatologist could come anywhere close to describing the all of the scientific and mathematical dynamics that occur in the game of pool, much less our climate. I’ve been studying the trigonometry and calculus of “spheres on planes” for some time now……and still get shown new things from time to time!

cal
August 14, 2011 8:25 am

Willis, I found the paper very interesting and useful. However whilst I think I sympathise with the sentiment I was not entirely convinced that you proved your point conclusively.
You talk about the climate but you seem to be describing weather systems. These weather systems must be well modelled by meteorologists since they have a pretty good record of short term forecasting. So surely the question is how well these weather systems are represented by climate models. In other words how are they affected by changes in the consituents of the atmosphere such as GHGs and aerosols as well as long term changes in things like land use, solar iradiance and possibly related cosmic rays. So, whilst I agree that the issue is about regime change and not linear feedback, I am not convinced that the models used by climate scientists cannot represent the actual system. To do this they need to model each of the regimes and then model and paramaterise the phase changes involved in switching from one to the other. One might even find that the output of this complex sytem model could be approximated to a relatively simple linear system with feedback just as complex socioeconomic sytems are often modelled. I doubt it, but it is not impossible. However, if this approximation exists it surely has not been adequately validated. For examples deep ocean currents and clouds are not well modelled by any of the IPCC models, all of which employ fudge factors to make the models fit. Until we have more historic data regarding overall system response and more detailed ocean and satellite data to parameterise the radiation balance equations, we have no way of determining whether these fudge factors are constants or not.

Roger Knights
August 14, 2011 8:29 am

“I am a climate heretic.”

Here’s a term with more “punch”: “I am a hot-air heretic.”
That’s similar to my other suggested term for our side: scorcher-scam scoffers.

Bruce Cobb
August 14, 2011 8:30 am

Bart Verheggen says:
August 14, 2011 at 3:03 am
So how do past climate changes (from snowball earth to the hothouse Cretaceous) fit in your paradigm that “that the temperature of the Earth is kept within a fairly narrow range through the action of a variety of natural homeostatic mechanisms.”?
After all, paleo shows that significant climate changes (of multiple degrees in the global average) are possible with relatively small changes in the radiation budget.

Do you really think our modern-day climate is in any way comparable to then? For starters, there were no ocean circulation patterns then, no polar regions, or separate continents.
Modern climate only started to develop about 5 million years ago, with the alternating ice ages lasting roughly 100k years and interglacials lasting 10 – 20k years appearing about 2 million years ago.
Ice ages and interglacials are, of course, entirely sun-driven. I think this essay of Willis’s needs a 2nd part, showing how homeostasis rules during the two different periods (which I think it does). The great oceanic conveyor belt is one huge homeostatic influence, as well as the poles.
The role of C02 is simply as an additional homeostatic influence, not as a climate driver.

ferd berple
August 14, 2011 8:31 am

Bart Verheggen says:
August 14, 2011 at 3:03 am
So how do past climate changes (from snowball earth to the hothouse Cretaceous) fit in your paradigm that “that the temperature of the Earth is kept within a fairly narrow range through the action of a variety of natural homeostatic mechanisms.”?
If one looks at the paleo records for the past 600 million years, it is obvious that for most of earth’s past the average temperature was 22C or 11C. Those are the preferred states, with attractors in the climate system that causes this. We don’t know what these are, but it could easily be the step function in energy required by the phase change between water vapour/water/ice.
As the paleo record shows, our current temperature of 14.5C is unstable. There is no reason that the temperature wants to stay at 14.5C, so there are large natural variations that have no “forcing” at all. The climate system is trying to head towards 11C and 22C at the same time, and swings back and forth as a result.
What we see as “forcings” are not forcings at all. They are natural variability of a chaotic system than is currently between two strong attractors. The attractors are not static, they are also in motion around each other. As one of the attractors (say cold for example) comes closer to us, the climate swings cold. However, before we go into orbit around the 11C attractor, the two attractors change places, and we now swing towards the 22C attractor and the climate warms. This then repeats as the attractors again change places.
This simplistic model assumes that there are only two attractors, one at 11C and one at 22C, but this is unlikely to be the case, with many attractors influencing temperature. However, we know from the 3 body problem, that even a system that has one body and two attractors cannot be solved by Newtonian mechanics. You need a probability function as used in quantum mechanics.
Climate science ignores the reality of the three body problem and continues to assume that simple linear equation can be used to predict the future. That the universe is a simple clockwork mechanism, with everything today fully determined by events yesterday, and those events determine by the day before, back to the beginning of time. Under that model, our climate and the actions of all humans, all decisions we make, were determined at the birth of the universe, and in the universe before. That indeed, the future is already written, and whatever the climate will be in 100 years was decided long ago.

pochas
August 14, 2011 8:36 am

netdr says:
August 14, 2011 at 7:51 am
“True but the alarmists speak their own language. They ignore the fact that the overall system is strongly negative feedback and instead define positive and negative relative to that.”
Unfortunately, that puts someone who doesn’t know about Boltzmann radiation at something of a disadvantage.

August 14, 2011 8:43 am

As Willis points out, the equation which states:
∆T = λ ∆Q
plays a leading role in the climatology of the IPCC “consensus.” As a conjecture, this equation has the property of being non-falsifiable thus lying outside science. The non-falsifiability follows from the fact that the equilibrium temperature ∆T is not an observable.

Roger Knights
August 14, 2011 8:57 am

Typos:
homeostasis is ” the property of a system,
(Reverse the curly quote and remove the space after it)
A new circulation pattern replace the random eddying.
(Change to “replaces”)

R. Gates
August 14, 2011 9:18 am

Jose Suro says:
August 14, 2011 at 7:33 am
Hello Willis,
Thanks for the article. I like your explanation except for this:
“Under the new late-morning cumulus circulation regime, much less surface warming goes on. Part of the sunlight is reflected back to space, so less energy makes it into the system to begin with.”
I’m just starting to study IR and how that part of the spectrum works. “Sunlight” is the complete spectrum and yes, while visible light is “reflected” back towards space by clouds (and not all of it by the way), I’m not too sure that a lot of IR is reflected by low clouds (no ice) back into space.
Seems to me from what little I’ve read so far that low clouds could be categorized as a non-grey body material and therefore selective emitters for different wavelengths. If so then the formula for clouds would be more like: Emissivity + Reflectivity + Transmission = 100%IR.
This is why I think that “reflected” is somewhat of a simplistic term that might not fully explain what is going on with low cumulus clouds. I don’t know enough about this yet to make a factual statement but it just could be that low level cloud reflectivity in the IR range is actually rather low…..
All the best,
J.
____
Your intuition about the simple model of 100% reflectance of clouds being wrong is correct. Clouds of different heights and densities respond to SW radiation in completely different ways, One interesting bit of research related to this ist:
http://www.atmos.washington.edu/~ackerman/Articles/McFarlane_2008JD009791.pdf

R. Gates
August 14, 2011 9:28 am

ferd berple says:
August 14, 2011 at 8:31 am
“Climate science ignores the reality of the three body problem and continues to assume that simple linear equation can be used to predict the future.”
_____
This is nonsense. The three-body problem is of course at the center of Chaos theory and climate research has long acknowledged that the climate is a dynamical system existing on the edge of spatio-temperal chaos and that the complexity of multiple interacting positive and negative feedbacks make it so particularly complex and nonlinear. This is one of the reasons that the study of past climates is so particularly important, as patterns of relationships between all the interacting forcings and feedbacks can be seen.

Matt Skaggs
August 14, 2011 9:37 am

“Counter-intuitively, the more water vapor there is in the air, the lighter it becomes.”
I’ve thrashed my intuition mercilessly over this inexcusable error. But if it asks where it went wrong, what should I tell it?

anticlimactic
August 14, 2011 9:38 am

To me one key question is : Would AGW be invented now?
If AGW had not been invented when it was is there anything in the current climate that would require AGW to explain it? I think the answer would be an emphatic ‘No’.
We are left fighting an idea which no longer has any reason to exist. So much has been shown to be lies, propaganda and obfuscation that in terms of TRUE science it has been defeated. When you realise someone is consistently lying you will tend to dismiss everything they say, not just the things you currently know to be a lie. Unfortunately, in the process, it has debased science. The majority of the public now think science is ‘making things up’ rather than ‘finding things out’.
The battleground is now more in the political arena, where politicians still seem hell bent on harming their country’s economy, despite so much evidence which undermines the idea of AGW. No doubt it is just coincidence that the main beneficiaries are the wealthy, who have the land and/or the money to invest in wind and solar and then rake in the profits. Despite being ‘critical for the future of mankind’ I have not heard of any ‘not for profit’ installations! This suggests profiteering at the public’s expense rather than being ‘for the good of mankind’. At least that is something I can believe to be true.

Spector
August 14, 2011 10:00 am

For this to work as a temperature regulating system, you have to assume that air convected to the top of the troposphere must be able to radiate their convected heat energy to outer space. As the primary CO2 band is still saturated there, however the H2O absorption/emission bands are open to outer space at this altitude since there is very little water in the upper atmosphere above the troposphere.
There are those who appear to steadfastly maintain that all thermal radiation is from the surface and the and the convection return flow, which must heat at the dry adiabatic rate of 9.8 deg C per 1000 meters going down–unless it is gobbling up condensed water vapor on the way, and reach the surface before it can be cooled again.
A thunderstorm event might be best depicted as a run-away rising column of air that is becoming progressively warmer than the surrounding air as condensing water vapor yields its heat of vaporization until almost all water vapor has condensed out and then cooling at a rate of 9.8 deg C per 1000 meters, it eventually reaches a warmer layer of air and spreads out like smoke over a ceiling.

Roger Knights
August 14, 2011 10:00 am

Willis says:
As far as I know, there is no homeostatic system in the body to maintain weight, so I think you have the wrong example to compare with climate homeostasis. Try the example of the human body’s regulation of temperature as a metaphor, there’s a much better fit.

Well, there is a hypothesized “set point” that regulates appetite and tends to maintain weight at too-high levels, causing most dieters to fail to lose weight permanently.
In addition to your pool table analogy, you ought to incorporate the warmists’ body-weight = Calorie-consumption assumed analogy into your paper, because it is a better fit to the way they are thinking, and enables you to point out its subtle flaw: the human body can’t increase its metabolism rate (via a higher body temperature) to keep its weight down, but the climate system can increase its convection rate; i.e., the rate at which it sheds heat.

Philip
August 14, 2011 10:01 am

Hi Willis,
Thanks for another nice article. I have a question. How does the temperature profile in the troposphere develop during the sequence of regime changes you describe?
Best regards.