It's Not About Feedback

Guest Post by Willis Eschenbach

The current climate paradigm believed by most scientists in the field can be likened to the movement of balls on a pool table.

Figure 1. Pool balls on a level table. Response is directly proportional to applied force (double the force, double the distance). There are no “preferred” positions—every position on the table is equally attainable and probable.

The current climate paradigm is as linear and as mechanistic as that pool table. At its heart is the belief that the controlling equation for the future evolution of the climate is:

Forcing Change of 3.7 watts/metre^2 = 3°C Surface Temperature Change

This can also be written as:

∆T = λ ∆Q

where ∆Q is the change in forcing, ∆T is the change in temperature, and lambda (λ) is the climate sensitivity of 3°C / 3.7 w/m2 = 0.8 degrees C for each additional watt/m2 of forcing.

Everything else is claimed to average out, leaving only that relationship. The ratio between the imposed forcing and the supposed resulting temperature change is assumed to be a constant, called the “climate sensitivity”. There is much discussion as to the value of the climate sensitivity, which swirls around whether there is net positive or negative feedback from things like clouds and water vapor. According to the prevailing theory and equation, if the climate sensitivity is high, a small forcing change is said to cause a larger temperature change, and vice versa.

Me, I don’t believe that equation one bit. I discussed problems with the equation in “The Cold Equations“. For me, the idea that surface air temperature slavishly follows forcing goes against everything I know about complex natural flow systems. I cannot think of any complex natural flow system which is linear in that manner with respect to its inputs. I find it completely astounding that people actually believe that the global climate system, with all of its intricate feedbacks and forcings and resonances and chaotic nature, is that linearly simple. But that is the current paradigm for the climate, a completely linear system.

I am neither a climate sceptic, nor an AGW believer, nor an agnostic on the subject. Instead, I am a climate heretic. I think that the dominant climate paradigm is completely incorrect. I hold that there is no level pool table. I say that there is no constant “climate sensitivity”. Instead, there are preferred states. I say, and have discussed elsewhere, that the temperature of the Earth is kept within a fairly narrow range through the action of a variety of natural homeostatic mechanisms.

So what is a homeostatic mechanism when it’s at home?

The concept of “homeostat” is a more general version of the word “thermostat”. A thermostat keeps temperature the same. A homeostatic mechanism keeps something the same. A familiar version is the “cruise control” of a car, which keeps the car’s speed the same. Per Wikipedia, homeostasis is “the property of a system, either open or closed, that regulates its internal environment and tends to maintain a stable, constant condition.” Not a bad definition. It is a natural governor which regulates some aspect of the system.

The first thing to understand about climate homeostasis is that it has nothing to do with feedback. This is because in general the controlling mechanism involves a regime shift, rather than a variation in some feedback value. The current furore about the exact level of feedback in the system, while interesting, is not directly relevant, as variations in feedback are not a feature of the control mechanism.

To see why the control mechanism regulating the earth’s temperature does not involve feedback, here is the evolution of the day and night in the tropical ocean. The tropical ocean is where the majority of the sun’s energy enters the huge heat engine we call the climate. So naturally, it is also where the major homeostatic mechanism are located.

At dawn, the atmosphere is stratified, with the coolest air nearest the surface. The nocturnal overturning of the ocean is coming to an end. The sun is free to heat the ocean. The air near the surface eddies randomly.

Figure 2. Average conditions over the tropical ocean shortly after dawn. 

 As the sun continues to heat the ocean, around ten or eleven o’clock in the morning there is a sudden regime shift. A new circulation pattern replaces the random eddying. As soon as a critical temperature/humidity threshold is passed, local circulation cells spring up everywhere. These cells transport water vapor upwards to the local lifting condensation level. At that level, the water vapor condenses into clouds as shown in Figure 3.

Figure 3.  Average conditions over the tropical ocean when cumulus threshold is passed. 

Note that this area-wide shift to an organized circulation pattern is not a change in feedback. It has nothing to do with feedback. It is a self-organized emergent phenomenon. It is threshold-based, meaning that it emerges spontaneously when a certain threshold is passed. In the “wet” deep tropics there’s plenty of water vapor, so the major variable in the threshold is the temperature.

Under the new late-morning cumulus circulation regime, much less surface warming goes on. Part of the sunlight is reflected back to space, so less energy makes it into the system to begin with. Then the increasing wind due to the cumulus-based circulation pattern increases the evaporation, reducing the surface warming even more by moving latent energy up to the lifting condensation level.

Note that the system is self-controlling. If the ocean is a bit warmer, the new circulation regime starts earlier in the morning, and cuts down the total daily warming. On the other hand, if the ocean is cooler than usual, clear morning skies last later into the day, allowing increased warming. The system is regulated by the time of onset of the regime change.

Let’s stop at this point in our examination of the tropical day and consider the idea of “climate sensitivity”. The solar forcing is constantly increasing as the sun rises higher in the sky. In the morning before the onset of cumulus circulation, the sun comes through the clear atmosphere and rapidly warms the surface. So the thermal response is large, and the climate sensitivity is high.

After the onset of the cumulus regime, on the other hand, much of the sunlight is reflected back to space. Less sunlight remains to warm the ocean. In addition to reduced sunlight there is enhanced evaporative cooling. Compared to the morning, the climate sensitivity is much lower. The heating of the surface slows down.

So here we have two situations with very different climate sensitivities. In the early morning, climate sensitivity is high, and the temperature rises quickly with the increasing solar insolation. In the late morning, a regime change occurs to a situation with much lower climate sensitivity. Adding extra solar energy doesn’t raise the temperature anywhere near as fast as it did earlier.

So climate sensitivity varies … which means, of course, that the constant “temperature sensitivity” that they claim exists must be an average temperature sensitivity. Fair enough, let’s take a look at how that works.

Suppose the early morning regime and the late morning regime are the same length, maybe three hours each. In that case we take the simple mathematical average. But here’s the problem. As noted above, when it’s warm the cumulus circulation starts up earlier than usual. More hours of cumulus means lower sensitivity.

On the other hand, when the ocean is cooler than usual, the clear skies prevail for more of the morning. As a result, the average climate sensitivity rises.

In other words, in the all-important tropical region, climate sensitivity is not a constant in any sense. Instead, it varies inversely with temperature.

Moving along through the day, at some point in the afternoon there is a good chance that the cumulus circulation pattern is not enough to stop the continued surface temperature increase. When the temperature exceeds a certain higher threshold, another complete regime shift takes place. Some of the innocent cumulus clouds suddenly mutate and grow rapidly into towering monsters. The regime shift involves the spontaneous generation of those magical, independently mobile heat engines called thunderstorms.

Thunderstorms are dual-fuel heat engines. They run on low-density air, air that rises, condenses out the moisture and rewarms the air, which rises deep into the troposphere.

Figure 4. Afternoon thunderstorm circulation over the tropical ocean.

There are a couple of ways to get low density air. One is to heat the air. This is how a thunderstorm gets started, as a strong cumulus cloud. The sun plus GHG radiation combine to heat the surface, warming the air. The low density air rises. When that gets strong enough, a thunderstorm starts to form.

Once the thunderstorm is started, the second fuel is added to the fire — water vapor. Counter-intuitively, the more water vapor there is in the air, the lighter it becomes. The thunderstorm generates strong winds around its base. Evaporation is proportional to wind speed, so this greatly increases the local evaporation.

This, of course, makes the air lighter, and makes the air rise faster, which makes the thunderstorm stronger, which in turn increases the wind speed around the thunderstorm base, which increases the evaporation even more … a thunderstorm is a regenerative system like a fire where part of the energy is used to run a bellows to make the fire burn even hotter.

This gives thunderstorms a unique ability that, as far as I know, is not represented in any of the climate models. It is capable of driving the surface temperature well below the temperature that was needed to get it going. It can run on into the evening, and at times well into the night, on its combination of thermal and evaporation energy sources.

Thunderstorms can be thought of as local leakages that transport heat rapidly from the surface to the upper atmosphere. They cool the surface in a host of ways, utilizing a combination of cold water, shade, wind, spray, evaporation, and cold air.

And just like the onset of the cumulus circulation, the onset of thunderstorms occurs earlier on days when it is warmer, and it occurs later (and sometimes not at all) on days that are cooler than usual.

So again, we see that there is no way to assign an average climate sensitivity. The warmer it gets, the less each additional watt per metre actually warms the surface.

Even what I describe above doesn’t exhaust the variety of self-organization to decrease incoming sunlight and move more energy aloft. If the day continues to warm, the thunderstorms self-assemble into long, long rows of thunderstorms called “squall lines” (not illustrated). Between these long lines of thunderstorms there are equally long areas of clear descending air. Instead of the regime of individual “doughnut-shaped” circulation around each thunderstorm and cumulus cloud, it has all been replaced by long cylinders of air which sink in the valleys between the serried rows of thunderstorms, and rise up through their centers. This increases the rate at which the energy can be moved from the surface and converted into work.

Like all of the regime shifts, the change from individual tropical thunderstorms to squall lines is temperature dependent and threshold based. It occurs at the warmest temperatures.

Finally, once all of the fireworks are over, first the cumulus and then the thunderstorms decay and dissipate. A final and again different regime ensues. The main feature of this regime is that during this time, the ocean radiates about the amount of the energy that it absorbed during all of the previously described regimes.

Figure 5. Conditions prevailing after the night-time dissipation of the daytime clouds.

During the nighttime, the surface is still receiving energy from the GHGs. This has the effect of delaying the onset of oceanic overturning, and of reducing the rate of cooling. However, because there are no clouds, the ocean can radiate to space more freely. In addition, the overturning of the ocean constantly brings new water to the surface, to radiate and to cool. This increases the heat transfer across the interface.

As with the previous thresholds, the timing of this final transition is temperature dependent. Once a critical threshold is passed, oceanic overturning kicks in. Stratification is replaced by circulation, bringing new water to radiate, cool, and sink. In this way, heat is removed, not just from the surface as during the day, but from the body of the upper layer of the ocean.

And as mentioned above, by dawn the combined effect of clear skies and oceanic overturning has lost all of the heat of the previous day, and the cycle starts over again.

So let me recap.

1. There are a series of temperature thresholds in the tropics, each of which when crossed initiates a completely new circulation regime. In order of increasing temperature, these are the thresholds for cumulus formation, thunderstorm formation, and squall line formation.

2. The time of crossing of each temperature threshold depends (on average) on whether the local area is warmer or cooler than usual. As a result, the entire system is strongly homeostatic, tending to maintain the temperature within a certain range.

3. Feedback does not play any significant part in this temperature control system. Nor do small changes in the forcings. The system adjusts by means of the timing. The various regime change occur either earlier or later in the day (or not at all), to maintain the temperature.

4. In each of these separate regimes, the climate sensitivity  is quite different.

5. The climate sensitivity for the tropical ocean varies inversely with the temperature.

My conclusion from all of this is that the climate, like other flow systems far from equilibrium, contains homeostatic mechanisms. One effect of these mechanisms is that the tropical temperature is constrained to remain within a fairly narrow range.

And that’s why I describe myself as a climate heretic. I think the earth has a thermostat, one that is not represented in any of the current generation of climate models. I don’t think that climate is linear. I think that climate sensitivity is not a constant at all, but is a function of temperature. And to return to the title of the post, I think that the debate should not be about feedback at all, it should be a debate about the types and the effects of the various natural homeostatic mechanisms.

And all of those are definitely heresies to the latest IPCC Council of Nicean Climate …

My best to all,

w.

0 0 votes
Article Rating

Discover more from Watts Up With That?

Subscribe to get the latest posts sent to your email.

226 Comments
Inline Feedbacks
View all comments
August 14, 2011 6:11 am

While I find the model interesting, there clearly must be some physics behind the current climate models which drive their construction in their current manner. I mean, whether you agree or not, there are a lot of very smart, well trained people who have constructed these. So, I think you have to be careful not to throw the baby out with the bathwater as I am sure there are elements which are good, but maybe this hypothesis could be integrated in with current models to develop a better model. I would be very interested to Spenser or Pielke comment on your hypothesis.
On a similar & related note, I wonder if anyone has considered a convolutional model to describe the relationship between forcings & outputs & if that is a useful model to describe the climate system. The response function would be much more complicated in output, depending on the forcing operator, but still linear with respect to that operator.

moe
August 14, 2011 6:25 am

Aurel
What you write is true, if you look at very local and short term sensitivities. However, I think Mr. Eschenbach is referring to sensitivities that have been averaged over longer periods of time and large areas of the planet’s surface. During these averaging the direct relation of a constant local and short term sensitivity is, as is shown above, invalidly transfered to a constant global sensitivity that is averaged over a year or even a decade.
With other words: averaged sensitivity does not make physical sense, and is rather a abstract parameter.
Due to these short term changes in the local radiation-pattern and energy-transport through convection, the longterm sensitivity -as a parameter- is not constant.

Caleb
August 14, 2011 6:28 am

As always, very interesting.
At the risk of making things hidiously complex, isn’t the morning sunshine coming down at a slant, and doesn’t it have less power than the noonday sun that pounds down on mad dogs and Englishmen?
Also, at some point, when the sun gets very low, it seems to stop penetrating the ocean’s surface. You no longer see those moving, golden lines on a sandy bottom, and underwater seems in shade even when it is still sunny above the surface. Does this mean the ocean is reflecting most of the incoming sunshine, at that point?

Drew
August 14, 2011 6:32 am

Willis Eschenbach I’ve often quite enjoyed your analysis, it’s fun. And I learn a lot outside my field. I have to take issue with this article because it draws conclusions that don’t follow from the premise. It also appears to me, if you rearrange some of the points, it is the same logic as what mainstream climatologists would agree with, bar the conclusions in it’s entirity because it gets a bit jumbled (imho).
“My conclusion from all of this is that the climate, like other flow systems far from equilibrium, contains homeostatic mechanisms. ” With this you then made your transition through to your final concept as follows, “And to return to the title of the post, I think that the debate should not be about feedback at all, it should be a debate about the types and the effects of the various natural homeostatic mechanisms.”
My conclusion would be that feedback mechanisms, to whatever extent they exist, are superimposed (in a way) on top of these various homeostatic mechanisms which nobody debates do not exist, but rather debate to what extent they can force a system, for what time frame they exist etc.
You can think about what you wrote in another way. The temperature is somewhat regulated to be within a boundary and requires a temperature, or wind speed, or air moisture content etc to create a condition which self rectifies to keep the system in these limits by these pursuing forces. As you gave as your example with thunderstorms, “It is capable of driving the surface temperature well below the temperature that was needed to get it going”. This homeostatic control will operate and can be thought of for simplicity as operating in a different tier to feedbacks because its regulation as you wrote, “the temperature of the Earth is kept within a fairly narrow range through the action of a variety of natural homeostatic mechanisms.” However, feedbacks operate to change the scale that homeostatatic mechanisms operate. This makes the environment self correcting within a different range, and given that CO2 produces net positives which are consistently retained, the environment does not snap back into place the original system by removing the CO2 from the atmosphere and reinstating a homeostatic process to continue the cycle. This is the principle which is not negated in your article.
If you think the feedback loop doesn’t exist for CO2, that’s entirely different, and is not what you were suggesting.

R. Gates
August 14, 2011 6:40 am

Willis, you have left out many of the actual feedback related elements involved in the creation of clouds over the ocean, chief among them is of course aerosols, which definitely do involve feedback processes. Clouds don’t form just from the heating of the ocean surface alone and convection, yet not once in your rather simple model did you mention aerosols– critical for cloud formation. You also left out key cloud types, such as marine layer stratus and cirrus, which provide much different types of response to daily insulation. This would be part of an entire discussion of clouds and vertical distribution of SW absorption– certainly a critical component. See:
http://www.atmos.washington.edu/~ackerman/Articles/McFarlane_2008JD009791.pdf
Other than all these key shortcomings, your simple homeostatic model is interesting.

August 14, 2011 7:04 am

I marvel at the magnificence and glory of the Lord’s work. The Lord has given us really giant heat pumps to keep us cool and they work the same way that the air conditioner in your house works. A liquid refrigerant evaporates at the location to be cooled, the refrigerant is transported to another location to condense and reject heat. Finally the condensed refrigerant is returned to continue the cycle!
Except where the air conditioning in our house may equal a few “tons” of refrigeration, a really big storm, like a hurricane, equals megatons!
(Ton is a measurement of refrigeration capacity: the cooling capacity of one ton of ice per day, standardized to 12,000 Btu/hr. That’s a 2,000lb short ton, not to be confused with a metric ton or a long ton.)
And you can get some really spectacular fireworks with the Lord’s AC where all Carrier delivers is an annoying “hmmmmmm”.
May your Sunday be blessed for this is a day he has given to you.
Regards,
Steamboat Jack (Jon Jewett’s evil twin)

TimC
August 14, 2011 7:06 am

Willis: thank you, but I have problems with this. The “homeostatic mechanisms” you describe are essentially diurnal: you describe how day-time solar heating, and night-time cooling, generate local weather effects in the tropics, the temperate regions etc.
But on larger scales (both in space and time) the earth is a planet of our local star; the sun is our only source of (purely radiative) energy; we have an atmosphere which clearly operates to reduce diurnal variations in temperature (which on black body basis would otherwise be huge, on human scale) and the radiative budget must always be exactly in balance. Unless any changes in solar insolation are immediately matched by total reflected radiation, the earth will warm – even if just to appear brighter to a (hypothetical!) extra-terrestrial observer.
While I agree that ∆T = λ ∆Q is a simplistic approximation, isn’t it just that – an approximation, hopefully tangential to some more complex curve (we haven’t encountered TSI changes of more than a few W/m^2 so just aren’t in a position to estimate what the true ∆T curve might be if ∆Q changed by, say, 10% or more).
If ∆T = λ ∆Q is a reasonable approximation of the (large-scale) effects of forcing on globally averaged temperature, why does it matter if a few clouds are banging around locally on a given day? If you could position yourself to view the earth’s rotation say 1M Km above the sub-solar point the weather (from east to west) would always look much the same, only varying (on any centennial timeframe) according to the sun’s annual declination and the consequent local geographical (land or ocean) effects. Why do you suggest the approximation is disproved by diurnal weather patterns?

August 14, 2011 7:10 am

Julian Flood says:
August 14, 2011 at 4:46 am
“John Marshall wrote:
quote: -63,000ft in a Vulcan bomber – unquote
Tut tut… unless you were wearing your decompression vests…
JF”

Max ceiling for an Avro Vulcan is 65,000ft – what’s your problem???

netdr
August 14, 2011 7:13 am

Interesting.
This may be the answer to the “ancient faint sun” paradox.
I believe I have read that the ancient sun was 25 % dimmer than the one we have today but the temperatures were similar.

August 14, 2011 7:20 am

“…the climate, like other flow systems far from equilibrium, contains homeostatic mechanisms.”
Simple.

August 14, 2011 7:29 am

Good article, thanks Willis!

Ian W
August 14, 2011 7:29 am

Bart Verheggen says:
August 14, 2011 at 3:03 am
So how do past climate changes (from snowball earth to the hothouse Cretaceous) fit in your paradigm that “that the temperature of the Earth is kept within a fairly narrow range through the action of a variety of natural homeostatic mechanisms.”?
After all, paleo shows that significant climate changes (of multiple degrees in the global average) are possible with relatively small changes in the radiation budget.

And for Bystander as well.
The climate is a chaotic system with (as Willis states) preferred states; or, in chaos terms ‘attractors’. The strongest attractor and most preferred state is that of glacial or ice-age, We are lucky enough now to be living in a time when the climate system is in the other state around the interglacial attractor.
If Svensmark and other researchers are correct the switch between these states could be due to weakness in the solar wind leading to more galactic cosmic rays entering the atmosphere and increasing the nucleation for cloud droplets (just as in a ‘cloud chamber’). Of course there may be other reasons for variations in GCR that are not yet known. This does not change Willis’ argument just adds yet another possibly chaotic variable that needs to be factored into chaotic system of chaotic subsystems.
Trying to produce a linear projection from the behavior of a chaotic system displays ignorance.

Jose Suro
August 14, 2011 7:33 am

Hello Willis,
Thanks for the article. I like your explanation except for this:
“Under the new late-morning cumulus circulation regime, much less surface warming goes on. Part of the sunlight is reflected back to space, so less energy makes it into the system to begin with.”
I’m just starting to study IR and how that part of the spectrum works. “Sunlight” is the complete spectrum and yes, while visible light is “reflected” back towards space by clouds (and not all of it by the way), I’m not too sure that a lot of IR is reflected by low clouds (no ice) back into space.
Seems to me from what little I’ve read so far that low clouds could be categorized as a non-grey body material and therefore selective emitters for different wavelengths. If so then the formula for clouds would be more like: Emissivity + Reflectivity + Transmission = 100%IR.
This is why I think that “reflected” is somewhat of a simplistic term that might not fully explain what is going on with low cumulus clouds. I don’t know enough about this yet to make a factual statement but it just could be that low level cloud reflectivity in the IR range is actually rather low…..
All the best,
J.

Camburn
August 14, 2011 7:34 am

Chris1958@146:
Thank you for deomonsrtating an old idea that is wrong, has been proven wrong.
Gaining weight/loosing weight is not only tied to calories. It is tied to the calories you eat, what those calories are from, and the amount of exercise you do. IT is deff not tied to caloric input nor caloric output.
One might call it individual feedbacks because while each body is similiar, it is not the same.
Just as in climate, regional areas affect climate at large. A watt here and a watt there do not produce the same results to the climate.

pochas
August 14, 2011 7:36 am

Boltzmann radiation is the big elephant in the room, and it does no good to obscure that fact. It gets warmer, more heat radiates to space. Its a great, big, negative feedback, raised to the 4th power, that hasn’t changed since the dawn of time. Everything else is of minor significance. Deny it and you speak gibberish.

Alan Clark of Dirty Oil-berta
August 14, 2011 7:40 am

In 1920, scientists believed that adding chlorine to surface water made it “as pure as a mountain stream”. It took over 50 years for science to establish that adding chlorine to surface water broke the chemical equilibrium and set-about the chain-reaction creation of thousands of new chemical compounds, many of which are still unidentified. I suspect that today’s climate scientists may be as unknowingly naive as their previous chemical cohorts.

PJP
August 14, 2011 7:49 am

When I was doing my degree at university, I had to do some one year duration course on topics not related to my degree subject. I chose economics as one of them. This was my first experience of the “soft” sciences.
The first lecture spent an hour doing a somewhat “hand waving” derivation of y=mx c.
Then it was explained that in reality functions were rarely linear, but the simple linear equations were used because they were good enough.
I stopped going to the lectures at that point. Read the book a week before the exam and passed….

Bernie McCune
August 14, 2011 7:50 am

There is probably a similar dynamic mechanism that operates over the New Mexico desert during our summer monsoons. Without an ocean beneath it, the dynamics are likely to be a bit different. I’ll have to think about that.
It has always been obvious to me that these very dynamic atmospheric descriptions are more likely to help us determine what is actually going on rather than the “on average” static calculations that seem to be popular right now. In another life while studying engineering I had two courses – “Statics” and “Dynamics”. Simply put Statics was easy while Dynamics was hard. I learned something from that academic exercise that immediately prepared me for the real world in general as well as later in my life in particular, for the complexities of climate. If it were easy we would not still be arguing about it. Thanks Willis.
Bernie

netdr
August 14, 2011 7:51 am

pochas says:
August 14, 2011 at 7:36 am
Boltzmann radiation is the big elephant in the room, and it does no good to obscure that fact. It gets warmer, more heat radiates to space. Its a great, big, negative feedback, raised to the 4th power, that hasn’t changed since the dawn of time. Everything else is of minor significance. Deny it and you speak gibberish.
****************
True but the alarmists speak their own language. They ignore the fact that the overall system is strongly negative feedback and instead define positive and negative relative to that.
Positive feedback is more warming than found by gray body radiation and negative feedback is less.
When I use a word,’ Humpty Dumpty said, in rather a scornful tone, ‘it means just what I choose it to mean — neither more nor less.’
‘The question is,’ said Alice, ‘whether you can make words mean so many different things.’
‘The question is,’ said Humpty Dumpty, ‘which is to be master — that’s all.’

August 14, 2011 7:52 am

There is another remarkable fact about thunderstorms. They effectively short circuit the greenhouse effect, because they change the lapse rate in the troposphere. It is nature’s way to transport huge amounts of latent heat directly to the upper atmosphere where it can then radiate directly to space. The AGW radiative forcing of CO2 is based on the dry adiabatic lapse rate. However, in saturated tropical air the lapse rate is about half that of dry air and the energy loss to space is actually greater despite any higher effective last scattering level. I am convinced that there is indeed a thermostat at work in the tropical oceans along the lines described by Willis Eschenbach. Otherwise how could the oceans have survived Earth’s climate upheavals for billions of years.

rbateman
August 14, 2011 7:55 am

The self-regulating would appear to include the Temperate Zones vs the Polar Zones.

August 14, 2011 7:56 am

I may be missing something, but I think Willis is describing something like a control system that uses negative feedback to run a step-function or bang-bang heating/cooling cycle. The control is via pulse width modulation (similar to most solid state relay systems) and the periodicity of the pulse train is 24 hr. Now when you drive this system with more energy input (solar, albedo, cosmic rays, ocean current variations, whatever) or energy retention (CO2, CH4, H2O, whatever), this will cause the system to move slightly on the high side of the “set point”. This would define the climate sensitivity, which with this control system would be rather low. Or am I missing some grand cosmic point?

Ric Locke
August 14, 2011 7:59 am

I spent twenty-five years working with aerial photographers. Aerial photography of the precise, mapping-oriented type they did requires cloud-free skies, or at minimum no clouds below the altitude the aircraft will fly to take photos. It also requires that the “sun angle”, the angle at which the sun’s rays hit the ground, be above a certain value, to minimize shadows in the scene that make interpretation difficult.
When attempting aerial photography in tropical climates, the morning phase change Willis describes is well-known and frustrating. The crew goes out and prepares the airplane and camera under clear skies, with hope for a successful mission. Then, at just the time the sun angle becomes sufficient for aerial photography, the phase change occurs. The photographers say “the cu is popping”, and it means that the mission must either be scrubbed entirely, or curtailed long before completion as the cumulus becomes too dense to work around. It can be months before there are enough hours in which the phase change occurs late enough to allow finishing a large project. The crew gets a lot of hours on the beach drinking drinks with fruit in and little hats on top, but they also don’t get to go home, and the per diem costs get the boss antsy.
Importantly: That same phase change occurs over land in temperate climates, especially the wide flat expanses of the center of North America. The chaotic, stratified circulation near the ground is converted into convection cells, and “the cu pops”. The time of onset is much more variable than it is in the tropics, probably (speculation) because the humidity is more variable, and at some times of year it doesn’t happen at all. From the point of view of the aerial photographer, the result is the same: the mission is impossible or must be cut short.
Willis might profitably interview some aerial photographers in the heartland, as a step toward quantifying his theory. Aerial photographers keep logs, and although those logs aren’t oriented toward climate monitoring, they are very sensitive to weather, especially the formation of clouds. Cross-correlation of those logs with known values of weather-related variables might yield useful and interesting results.
Regards,
Ric

ferd berple
August 14, 2011 8:00 am

Boudu says:
August 14, 2011 at 2:12 am
Are there records of the frequency and intensity of tropical thunderstorms and do they correlate with the observed warming and cooling trends seen in the temperature records?
The record becomes clear when one lives in the tropics near or on the ocean. “Winter” in the tropics is almost always known as the “dry” season and summer is almost always known as the “wet” season. Thunderstorms are typically much less fequent in the dry season than in the wet. The situation is not quite as simple as that due to monsoon patterns, but it is generally true.
When is summer and winter in the tropics? It depends on your latitude. Right on the equator it is hottest in spring and fall as the sun passes directly overhead twice a year.
During “summer” in the tropics it can be unbearably hot, but as the thunderstorms build and the rain begins this makes the temperate much less extreme. In fact, “summer” is often a good time to travel if you are not used to the tropic, as the increased cloud cover limits sunburn.
“Winter” in the tropics is typically cooler than summer, especially in the morning, but the skies are often clear all day and by the end of the day it can be as hot or hotter than summer. The main difference between summer and winter in the tropics is not the temperature so much as the humidity. Tropical winters are dry and summers are wet.
The problem with temperature as a measure of climate is that it is misleading without a measure of humidity, as moist air has more thermal energy than dry air of the same temperature.

Roy
August 14, 2011 8:07 am

Willis,
Excellent model. One point didn’t quite ring true as it didn’t have a mechanism attached.
“The main feature of this regime is that during this time, the ocean radiates about the amount of the energy that it absorbed during all of the previously described regimes”
The amount of energy radiated may vary dependent on such things as how long the thunderstorms lasted overnight. So the ocean temperature at dawn may vary a bit. The fixed point in the cycle is at the late morning transition. The point would be better put as “The morning phase absorbs as much energy as net lost over the previous afternoon and night’s regimes”.
This statement is true for each day, rather than for an average over time.