Zero Point Three times the Forcing

Guest Post by Willis Eschenbach

Now that my blood pressure has returned to normal after responding to Dr. Trenberth, I returned to thinking about my earlier somewhat unsatisfying attempt to make a very simple emulation of the GISS Model E (herinafter GISSE) climate model. I described that attempt here, please see that post for the sources of the datasets used in this exercise.

After some reflection and investigation, I realized that the GISSE model treats all of the forcings equally … except volcanoes. For whatever reason, the GISSE climate model only gives the volcanic forcings about 40% of the weight of the rest of the forcings.

So I took the total forcings, and reduced the volcanic forcing by 60%. Then it was easy, because nothing further was required. It turns out that the GISSE model temperature hindcast is that the temperature change in degrees C will be 30% of the adjusted forcing change in watts per square metre (W/m2). Figure 1 shows that result:

 

Figure 1. GISSE climate model hindcast temperatures, compared with temperatures hindcast using the formula ∆T = 0.3 ∆Q, where T is temperature and Q is the same forcings used by the GISSE model, with the volcanic forcing reduced by 60%.

What are the implications of this curious finding?

First, a necessary detour into black boxes. For the purpose of this exercise, I have treated the GISS-E model as a black box, for which I know only the inputs (forcings) and outputs (hindcast temperatures). It’s like a detective game, trying to emulate what’s happening inside the GISSE black box without being able to see inside.

The resulting emulation can’t tell us what actually is happening inside the black box. For example, the black box may take the input, divide it by four, and then multiply the result by eight and output that number.

Looking at this from the outside of the black box, what we see is that if we input the number 2, the black box outputs the number 4. We input 3 and get 6, we input 5 and we get 10, and so on. So we conclude that the black box multiplies the input by 2.

Of course, the black box is not actually multiplying the input by 2. It is dividing by 4 and multiplying by 8. But from outside the black box that doesn’t matter. It is effectively multiplying the input by 2. We cannot use the emulation to say what is actually happening inside the black box. But we can say that the black box is functionally equivalent to a black box that multiplies by two. The functional equivalence means that we can replace one black box with the other because they give the same result. It also allows us to discover and state what the first black box is effectively doing. Not what it is actually doing, but what it is effectively doing. I will return to this idea of functional equivalence shortly.

METHODS

Let me describe what I have done to get to the conclusions in Figure 1. First, I did a multiple linear regression using all the forcings, to see if the GISSE temperature hindcast could be expressed as a linear combination of the forcing inputs. It can, with an r^2 of 0.95. That’s a good fit.

However, that result is almost certainly subject to “overfitting”, because there are ten individual forcings that make up the total. With so many forcings, you end up with lots of parameters, so you can match most anything. This means that the good fit doesn’t mean a lot.

I looked further, and I saw that the total forcing versus temperature match was excellent except for one forcing — the volcanoes. Experimentation showed that the GISSE climate model is underweighting the volcanic forcings by about 60% from the original value, while the rest of the forcings are given full value.

Then I used the total GISS forcing with the appropriately reduced volcanic contribution, and we have the result shown in Figure 1. Temperature change is 30% of the change in the adjusted forcing. Simple as that. It’s a really, really short methods section because what the GISSE model is effectively doing is really, really simple.

DISCUSSION

Now, what are (and aren’t) the implications available within this interesting finding? What does it mean that regarding temperature, to within an accuracy of five hundredths of a degree (0.05°C RMS error) the GISSE model black box is functionally equivalent to a black box that simply multiplies the adjusted forcing times 0.3?

My first implication would have to be that the almost unbelievable complexity of the Model E, with thousands of gridcells and dozens of atmospheric and oceanic levels simulated, and ice and land and lakes and everything else, all of that complexity masks a correspondingly almost unbelievable simplicity. The modellers really weren’t kidding when they said everything else averages out and all that’s left is radiation and temperature. I don’t think the climate works that way … but their model certainly does.

The second implication is an odd one, and quite important. Consider the fact that their temperature change hindcast (in degrees) is simply 0.3 times the forcing change (in watts per meter squared). But that is also a statement of the climate sensitivity, 0.3 degrees per W/m2. Converting this to degrees of warming for a doubling of CO2 gives us (0.3°C per W/m2) times (3.7 W/m2 per doubling of CO2), which yields a climate sensitivity of 1.1°C for a doubling of CO2. This is far below the canonical value given by the GISSE modelers, which is about 0.8°C per W/m2 or about 3°C per doubling.

The third implication is that there appears to be surprisingly little lag in their system. I can improve the fit of the above model slightly by adding a lag term based on the change in forcing with time d(Q)/dt. But that only improves the r^2 to 0.95, mainly by clipping the peaks of the volcanic excursions (temperature drops in e.g. 1885, 1964). A more complex lag expression could probably improve that, but with the initial expression having an r^2 of 0.92, that only leaves 0.08 of room for improvement, and some of that is surely random noise.

The fourth implication is that the model slavishly follows the radiative forcings. The model results are a 5-run average, so it is not clear how far an individual model run might stray from the fold. But since the five runs’ temperatures average out so close to 0.3 times the forcings, no individual one of them can be very far from the forcings.

Anyhow, that’s what I get out of the exercise. Further inferences, questions, objections, influences and expansions welcomed, politeness roolz, and please, no speculation about motives. Motives don’t matter.

w.

 

5 2 votes
Article Rating

Discover more from Watts Up With That?

Subscribe to get the latest posts sent to your email.

165 Comments
Inline Feedbacks
View all comments
January 22, 2011 5:14 am

Paul_K:
Thanks for your patience in responding to a tyro. It turns out that I actually had replicated your work–except for (1) the additive constant (“SHIFT2”) that, having downloaded your spreadsheet, I now see you include, (2) the one-year time shift you introduce in columns EQ and ER, and (3) what I think is an error in your calculation.
Specifically, if you compare, say, cell W12 in your WILLIS worksheet with its cell X12, you’ll see that the latter’s exponential decay is shifted by two years from the former’s rather than by one year. That seems wrong.

January 22, 2011 6:26 am

Paul_K:
Please ignore my “that seems wrong” post; I failed to notice that you also have a “+1” in the X column’s exp() arguments.

Paul_K
January 22, 2011 6:50 am

Joe,
Thanks for checking!
1) The shift in temperature is a fitted value which just “translates” the predicted temperature CHANGES to the same reference frame. Willis did the same thing, but thanks for mentioning it.
2) There is not really a one year shift. The forcing CHANGE over the previous year, is measured from the cumulative forcings at the end of the year. The assumption is that this initiates a flux perturbation and consequent temperature effect starting at the end of that year/beginning of the following year. Or, if you prefer, that the change in forcing occurs as a step at the end of each year considered. This is typical for an EXPLICIT formulation.
3) I re-examined the cells you mentioned and I don’t think there is an error. Each column represents a new temperature response initiated by the forcing in that year. (As a check, if you sum each of the columns, they should be equal to lamda*F, where F is the forcing relevant for that year.)
So let’s consider W12. This should be the temperature change at the end of the third year after the first forcing was implemented namely DT(3) – DT(2) for the first year forcing, and that is what is calculated. X12 should be the temperature change at the end of the second year from the second year forcing, or DT(2) – DT(1) from the second year forcing, and that is what it looks like to me. Moving along one column, Y12 should be the first year temperature response from the third year forcing, and it looks to me like DT(1) – DT(0) for the third year forcing. I can’t see any mistake there. Note that I did not generalise the EXCEL formula for the first column (“W”), but did so for all the other columns. This may be confusing you?
Thanks again
Paul

Paul_K
January 22, 2011 9:28 am

Joe,
Let me try 2) above again, because I managed to confuse myself.
There is no one year shift. The message in the spreadsheet just signals that all of the rows have been moved down by one in that area of the spreadsheet – this only needs to be taken into account for plotting against actual years. The forcing for year n does initiate the temperature response in the same year, contrary to what I said above. For example, if you check the data inputs, the forcing for year 1881 is callculated in cell T10, and the temperature from GISS E for 1881 is -.09749. In the spreadsheet, the first year temperature response from that forcing is calculated in EQ11, ER11 and ES11 (one row down). The resultant temperature is then compared to the GISS E temp in cell ET11, which is -.09749 – the temp for 1881. In other words the rows in that area have all been displaced by one year. This is becasue at one stage I really was coarsely testing numerical effects of start-year, mid-year and end-year calcs. There is no shift applied in the results shown. Sorry for the confusion.

January 22, 2011 3:54 pm

Paul_K:
It is I who should apologize, since all you said would have been completely apparent–and I would have saved you the trouble of an explanation–if I had just thought the spreadsheet through a bit more.
Perhaps I can partially redeem myself by making a suggestion that may (1) simplify your calculations and (2) afford an alternative view. As I suspect you already know, what climate folks apparently call an “impulse” actually is the integral of what some other disciplines use that term for; back when we did analog signal processing, we used “impulse” to mean the Dirac delta function, i.e., the derivative of the unit step.
Now, I brought this up before I saw your spreadsheet because your initial (and, as it turned out, accurate) description of what you were attempting to do made me question that description. Specifically, it sounded to me as though you were doing much more computation than was necessary to accomplish what your description seemed to say you were trying to do. When I received your spreadsheet, though, it showed that you said what you meant–and that your columns W through EO did perform what seemed to be needlessly involved computation.
What you essentially do is a numerical approach to convolving the forcing differences with the system’s response to what climate folks call an impulse (and I would have called a unit step). Analytically (but not numerically) such a convolution is is equivalent to convolving the forcings themselves with the system’s response to the Dirac delta function.
But that latter, equivalent convolution can simply be performed numerically in accordance with:
T(n) = [lambda * Forcings(n-1)/tau + T(n-1) ] exp(-1/tau).
This would eliminate the need for the above-mentioned columns W through EO .
As I say, these two convolutions are analytically equivalent. However, their results differ if you do them numerically. When I used the Dirac-delta-function approach, I got a temperature curve that was much the same as yours but exhibited stronger reactions to sudden forcing changes. It is not clear to me that this result is inferior to what you get in your spreadsheet. But computing it is more straightforward.
Thanks again for helping me sort through your model. (Now I can finally start to look at the real point, which is what is implied by your model’s ability to emulate the model that Deep Thought implements.)

Jim D
January 22, 2011 4:51 pm

Interesting results, Paul_K.
I am curious whether, if you change the tau to 10 years, you can get a fit that is equally good without having to reduce the volcanoes.
In other words I think you have some compensating free parameters in the lag period and sensitivity. Make the former longer and the best-fit sensitivity would be higher, and the fit may not degrade.

Joel Shore
January 22, 2011 5:59 pm

Paul_K:
Here are two of the 3 comments on Schwartz:
http://www.jamstec.go.jp/frsgc/research/d5/jdannan/comment_on_schwartz.pdf
http://www.fel.duke.edu/~scafetta/pdf/2007JD009586.pdf
(The 3rd one, by Knutti et al., I can’t find a copy of.)
And, here is Schwartz’s reply to the comments: http://www.ecd.bnl.gov/pubs/BNL-80226-2008-JA.pdf

Paul_K
January 22, 2011 6:29 pm

Jim D says:
January 22, 2011 at 4:51 pm
I am curious whether, if you change the tau to 10 years, you can get a fit that is equally good without having to reduce the volcanoes.
Jim,
The answer to this is “no”. I tried free fitting the parameters without factoring the volcanoes and the match is not bad, but it is not as good as with the factor. I also tried forcing a fit with a large value of tau (greater than 5 years) with and without a factor on the volcanoes, but the optimiser always wants to bring the value back to the constraint condition.
What I have not yet tried is allowing the volcano forcing to have its own properties of sensitivity and equilibration time. I suspect that this might eliminate the need for a factor.

Paul_K
January 22, 2011 6:45 pm

Joel Shore,
Many thanks for the references. It seems that the main complaint in both critiques was Schwartz’s error in assessment of autocorrelation, since the method he applied involved abstracting a trend from non-stationary data. The first paper (also) comments that the results gave a different answer from runs from a GCM where the climate sensitivity was “known” to be 2.7 deg C for a doubling of CO2, but frustratingly does not explain how the model’s equilibrium climate sensitivity was calculated, unless I missed something important.
I have just finished an analysis of the OHC response to the GISS forcings, and it matches the available GISS data remarkably well with a short equilibration time constant. I will post on it tomorrow, since it is a bit involved. I am more and more puzzled.

wayne
January 22, 2011 7:01 pm

Paul_K says:
January 21, 2011 at 5:19 pm

However, there is potentially another way to skin this cat and address a separate question. Do some of the forcings perhaps have a much longer equilibration time and higher sensitivity – which is lost in the grouping of all such forcings?
—-
Exactly Paul, that was my very point. The quick fitting as I references in my last comment kept coming up with snow/ice albedo massively underweighted and others showing the best fit as if they were best ignored, some with best fit if they were actually reversed (ie, inverse effect, but small, which basically negates it’s effect on T).
I know that is a different question and don’t want to distract from your current track but if you get time in the future, I think you will find some very curious indications there, especially if you attempt to duplicate GISS Temp and not the model’s output while using those forcings supplied by GISS.
I’ll leave you alone for now, you do see what I was pointing at.

Jim D
January 22, 2011 7:40 pm

Paul_K, another way to go is to have a sensitivity as an inverse function of frequency which is a forced harmonic oscillator analogy. This would be more involved mathematically, as I think you would have to decompose the forcing frequencies. There is reason to believe that the response is stronger at lower frequency rather than being uniform for all driving frequencies.

Paul_K
January 23, 2011 7:53 am

I was searching for GISS E model OHC results, without any success, when Gavin read my mind and produced them here, at least for recent times (1970 to 2003).
http://www.realclimate.org/index.php/archives/2011/01/2010-updates-to-model-data-comparisons/
The graph of OHC data shows the “ensemble mean” results from the GISS E model to2003. These data should correspond to the temperature profile from GISS E which we matched earlier with a simple superposition model.
Using the same model as previously (Schwartz), we can convert each forcing increment into a perturbation on the net difference between incoming and outgoing flux. The sum of all these individual net differences at any point in time gives us the total net difference, and the integration of this forwards in time, gives us the cumulative energy gained or lost by Earth’s system. Since the heat capacity of the ocean is several orders of magnitude greater than the atmosphere or land surface, we expect most of this additional energy to be seen in the oceans in the form of heat energy.
Several commenters over at Lucia’s suggested that the reason for the big difference in apparent climate sensitivity between the simple model and the GCM might be explained by energy lost to OHC or some other secondary long-term system. See conversation after Comment#66788
http://rankexploits.com/musings/2011/odds-are/
So here is a graphical presentation of how well the simple superposition model matches GISS E.
http://img218.imageshack.us/img218/5416/ohcmatch.jpg
The solid yellow line is the change in OHC computed from the simple model using the original estimation of time equilibration constant, tau = 2.61. It reflects the shape of the GISS E result very well, but is not quite matching the energy gain. The second dotted-purple line is the result obtained by resetting the value of tau to 3.5. The match in energy gain becomes excellent over the data period.
I then returned to the temperature match and re-optimised the match for tau fixed at 3.5. The result is a small loss of fidelity. R^2 falls to 98.2%. The re-matched parameters are as follows:
Equilibrium Climate sensitivity 0.345
Tau 3.5
Volcano factor 0.775
RSS 0.0687
RMS error .024
In other words, this is still an incredibly high quality match of both temperature and OHC from the GISS model – and no missing heat anywhere.

wayne
January 23, 2011 2:51 pm

Hi Paul… thought I should save you from the trouble… went ahead and wrote in c sharp a monte carlo fitting using your method (excel wouldn’t handle the 33 simultaneous parameters), this time against GISSTemp instead of the model’s output. Took many hours to run but simple. The results are basically the same I got before. Snow albedo up four times, land use and solar up, and GHG’s one fourth with things like O3 and aerosols even going negative (should be inversed).
After some thinking it seems this might show absolutely nothing except that the data of the forcings has certain shapes that are preferred and those ‘shapes’ are what fit the data the closest. For instance nasa shows (think is was via MODIS) that albedo shows no real effect at all, at least by radiation readings but, this fitting shows it should be increased four fold. Makes no real sense. Thought you would want to know so not to waste your time too though it’s still curious.

Paul_K
January 24, 2011 2:16 pm

Wayne,
Interesting. You are tackling a different problem entirely (and a notoriously difficult one). If you are interested in the albedo issue, particularly, you might want to examine Figure 9.3 in Chapter 9 of WG1 of the AR4. It shows a massive mismatch of albedo in the models and that observed.

1 5 6 7
Verified by MonsterInsights