This thread debates the Miskolczi semi-transparent atmosphere model.
The link with the easiest introduction to the subject is http://hps.elte.hu/zagoni/Proofs_of_the_Miskolczi_theory.htm
This thread debates the Miskolczi semi-transparent atmosphere model.
The link with the easiest introduction to the subject is http://hps.elte.hu/zagoni/Proofs_of_the_Miskolczi_theory.htm
BPL,
Since you are a Christian, do you find it plausible that God would allow a runaway greenhouse effect on earth? Is God more concerned about CO2 than the way we treat each other?
The evidence to me is that the climate on earth is extremely finely balanced, which begs the question what or whom keeps it that way.
My concern is a hasty political solution which is likely to do far more harm than good.
BPL, do you have some proof of AGW? I mean, besides the fact that it’s a “consensus”, the “debate is over”, “we’re at a tipping point”, and “if we don’t act now, we’re all doomed?” Anything at all scientific? We’re all ears.
BPL, perhaps you can explain how ‘conventional climate models’ explain Venus, with its opaque, extremely high-density atmosphere and high albedo – especially as you seem to indicate that the ‘runaway greenhouse effect’ cannot happen.
As a garden variety engineer I appreciate the noises Miskolzci makes re: “infinite atmosphere”, “boundary conditions”, and correcting the “optical depth”, all of which seem pointed at rehabilitating Beers-Lambert as apt, but feel that case is hopeless.
His Kirchoff-related arguments are more useful:
The law established through revisions by a number including Planck and Einstein, that for a body in thermal equilibrium emissivity=absorptivity. These are dimensionless contants of proportion to an ideal black body, absorbing all incident radiation, whose wavelength of emission is strictly controlled by its temperature.
Solids can intelligibly be called gray bodies, as analogous to the ideal, having a temperature controlled curve of emission which is displaced with respect to temperature.
Representative empirical emissivities:
Asphalt 0.99
Green leaves 0.94
Snow 0.85
Water 0.58
Polished metals 0.3 to 0.4
These materials will progressively emit at higher temperatures than the ideal, as analogies between them an the ideal progressively weaken.
Gases’ emissions, on the otherhand, are subject to both temperature and pressure. An infinite number of curves are needed to describe their emissivities at various pressures and temperatures.
At 25 degrees C and 1 Atm CO2 has an emissivity of 9*10^-4, or 1000 times smaller than snow. This is true at 300ppm or 3000ppm.
At 600 degrees C its emissivity rises to 0.07, possibly important on Venus, but not here.
What Miskolzci seems to imply re: Kirchoff, is the recognition that absorbtion, e.g., at 15um by CO2, when not instantly followed by emission along the wavefront, is rapidly followed by the sharing of the kinetic energy gained with the molecules enviornment, other molecules.
The energy is not stored for emission by the CO2 molecule, and need not be emitted at 15um when that molecule next does so. The temperature of the gas is an average and individual molecules can vary widely emitting randomly as their preferred energy drops permit.
“Which planet are you talking about? On Earth, temperatures have risen over the past 150 years, and humidity is up at a rate of about 0.9 millimeters of precipitable water per decade — consistent with the Clausius-Clapeyron law, and thus with a positive water-vapor feedback.” –Barton Paul Levenson
It’s the planet where increasing CO2 has not resulted in the predicted temperature increase in the troposphere (funny you left that part out) and where the more recent humidity measures also appear to be dropping rather than increasing despite a steady rise in CO2; the planet where the predicted warming (much less the predicted increase in the rate of warming) has not occurred. That planet.
My point was that even if Miskolzi’s approach is completely bogus, his contention that (a) CO2 sensitivity is lower than currently accepted because (b) negative feedbacks (however badly described) will make net AGW far less than generally expected is a better fit for current reality than the big temp upswing we were told to expect in IPCC AR4.
I was duly impressed with your gratuitous reference to Clausius-Clapeyron. It reminds us how elements of truly settled science (e.g., ideal gas, change of state) are insufficient to explain things like cloud formation and thus leave us with big gaps in the descriptive and predictive power of climate science. Models filled to the brim with such settled science goodies are destined to fail if it is known at the outset that the tool set is incomplete with respect to the task at hand.
I’ve gathered together a set of links about Miskolczi’s paper
He gets Kirchoff’s law flat wrong (it is about absorbtivity and emissivity of the same body, not between systems, and btw, it is a function of wavelength, almost everything has a absorbtivity of ~.9 and more in the IR, but not in the visible), his virial argument is wrong and more. It’s not worth 80 comments, and lord knows it is not worth the >300 at the CA BB.
AGW also gets Kirchoff’s law flat wrong. The Atmosphere is not in thermal equilibrium therefore Kirchoff does not apply.
Even if CO2 weakly absorbs it must more weakly emit. Arrhenius was a loon.
Gary, Kirchoff’s law applies to any region of the atmosphere in which a temperature can be measured (basically described as being in local thermodynamic equilibrium). This is true up to about 100 km.
You also are confusing absorbtivity with absorption and emissivity with emission. Go read what Nick Stokes says on this in CA BB or Niche Modeling.
Eli or whomever, go take Thermodynamics, e.g., with “Thermal Physics”, Kittel & Kroemer, or more feasibly, read “QED” by Richard Feynman. The latter is short and accessible.
It is AGW modellers who mistake absorptance for absorptivity (not absorbtivity as you have it) conflating Beers’ signal attenuation with an electromagnetic propagation.
The Beers result grossly understates absorption and therefore overstates emission. At no time is the instantaneous ‘optical depth’ derived which would make clear the impossibility of the AGW result of variously 0.6 to 0.9.
Your definition of equilibrium is gibberish.
Gary do you agree or disagree that absorptivity and emissivity are properties of a material determined by the composition of the material, the temperature of the material and the wavelength of light emitted or absorbed.
In the sense that my daughter’s eyes are blue are a property of hers.
I am fascinated about the inconsistency displayed by the AGW supporters, relative to Miscolczi. They nit-pick M’s thesis at length, while they can offer no comparable thesis of their own. Where is the exposition of the physics behing “positive water vapor feedback?” Steve McIntyre has been asking this question for over 2 years, first as an IPCC reviewer and then periodically on his CA blog. IPCC is silent. The radical AGW crowd is silent. The silence is deafening. It appears that this putative feedback can only be shown somehow through GCMs. But those models have to be based on some physical principles, right? (wrong?). And the fact that those models are doing very poorly at modeling atmospheric temperatures (and even surface temperatures over the last 10 years) indicates that WHATEVER assumptions are incorporated in the models are erroneous. Where’s the beef?
Wow Hansen’s’ minions have emerged from the monastery at Real Climate dsipatched by Herr Gavin, to argue, demean, disdain , dismiss and destroy Dr, Miskolczi work.
Nick Stokes could conduct a civil discourse and disagree with some theoretical posits, of Dr. M. as not proved. There is nothing wrong with that.
The er “gentlemen from RC, like Barton Paul Levenson, Eli Rabett, et cetera have deigned to honor this conversation with their Revealations and bon mots scoring what they consider points, before ascending back to the hallowed Sanctuary of RC, happily having shed heat but no light. Never actually revealing or discussing the Emperors’s non existent Clothes.
Hi, the “action” has moved to the Climate Audit Bulletin Board, all ~600 posts of it. As to the physics behind a positive water vapor feedback, try the fact that water vapor pressure increases exponentially with temperature (more precisely exp(-Hvap/RT).
The issue is that when nits are basic assumptions they are boulders in a theoretical calculation, and that is what is being criticized about Miskolczi’s paper. He has at least two basic assumptions which are a) unjustified and b) wrong.
“about Miskolczi’s paper. He has at least two basic assumptions which are a) unjustified and b) wrong.”
If the incremental improvement has so many issues version 0.1 must be unusable.
“As to the physics behind a positive water vapor feedback, try the fact that water vapor pressure increases exponentially with temperature (more precisely exp(-Hvap/RT).”
LOL. While this is true, it is not the type of “feedback” that is at issue here. Don’t we need some W/m^2-type feedback? And if we had this type of feedback, why don’t temperatures in the tropics get above 33 C?
I have also been studying Miskolczi’s paper, and have gotten through about to page 10 before being stopped by a series of problems and apparent non sequitors, some of which have been mentioned by Nick Stokes and BPL above.
I have written this up and sent my comments to Dr. Miskolczi, who said he would be traveling until August and might be able to respond at that time. The main points can be summarized as follows:
– The validity of the “classical” statement of the Virial Theorem (specifically, the ratio [total KE]/[total PE] = ½) seems very doubtful in this application. (There is a lot of calculation behind this simple statement.)
– The relationships between the bulk quantities and the fluxes ([total KE] and EU, and [total PE] and the radiation flux) are not clear. What are the equations relating them?
– It is not clear how to interpret Eq. (7) in terms of the total energy flux into a specific system. It seems to me that any argument based on conservation of energy must have such an interpretation.
– It is not clear how the factor of (3/2) between SU and OLR jumps discontinuously to (1) as the strength of the radiation-molecule interaction vanishes.
– I do not understand the derivation of Eq. (9) from Eq. (8).
I hope he gets back to me.
Eli, you’ll note that the discussion at ClimateAudit went strangely silent after a clear precedent for using Kirchhoff’s Law in the atmosphere to equate absorption & emission was presented — on p. 3 of Goody & Yung (1989) (a standard textbook on atmospheric radiation) . I will reproduce the relevant quote here:
Since clouds, ground, and atmosphere do not differ greatly in temperature, it follows from Kirchhoff’s laws that emission and absorption are approximately equal to each other. Terrestrial radiation is therefore passed from layer to layer in the atmosphere … The situation differs in the upper atmosphere because Kirchhoff’s laws are not obeyed if the pressure is very low.
If you’d like to read this for yourself the relevant pages are available online here: http://books.google.com.au/books?id=Ji0vfj4MMH0C
This should be compared with Miskolczi & Mlynczak (2004)’s usage of the same law where it is stated (p. 232):
• In the average sense the atmosphere is very close to the radiative equilibrium, and, as a consequence, the zonal and global average upward emittance is about half of the average surface upward flux density. This fact is supported by the recent assessment of the Earth’s annual global mean energy budget by Kiehl and Trenberth (1997). Their estimates of SU and EU are 390 and 195 W m –2, respectively.
• As a consequence of the Kirchoff’s law, within the clear atmosphere the
downward emittance is approximately equal to the absorbed flux density. Based on our data set, the global average clear-sky downward atmospheric emittance is 311.4 W m–2, while the global average of the absorbed radiation by the clear-sky is 311.9 W m–2. This equivalence – for the highly variable atmospheric emission spectra and for global scale – was not shown before with such a high numerical accuracy.
There is no difference, and from what I can see, finally, there is nothing even unusual or controversial about Miskolczi’s usage of the law. So much for “just flat wrong.” All of this talk that “Kirchhoff’s Law can’t be used to equate absorption & emission” is just a clear nonsense.
I’m not even a physicist, so it’s been very difficult for me to resolve this. It came as a huge surprise to me when I saw this quote on p. 3 of the standard textbook. What’s particularly troubling is that our experts don’t seem to have taken atmospheric radiation 101.
Neal, I’ll also be interested to know the outcome of your queries to Dr. Miskolczi. It should be noted, though, that the Virial section is referred to by M. Zagoni as a “fine-tuning” of the theory. See the “historical reconstruction” slide. http://hps.elte.hu/zagoni/Proofs_of_the_Miskolczi_theory_elemei/image060.jpg It only enters in point 8 of the 12 points. Once the atmospheric Kirchhoff law is accepted, and the derivation of the general greenhouse equation (eq 21) is agreed to be valid (Nick Stokes, at least, already agreed), we are most of the way there. It would no longer be possible to pretend that this theory isn’t important, whatever the outcome on the Virial theorem.
Alex Harvey,
I have looked at Zagoni’s slides before, but don’t find them helpful: a PowerPoint presentation can give a sense of the conclusions, but doesn’t present the logical argument. A set of bullet items does not constitute a mathematical proof.
Others (I think at RealClimate) have pointed out that Zagoni, or even an alternative presentation of Miskolczi’s, asserts as an experimental observation what in the original paper is presented as a theoretical derivation: Not in the sense of “here’s what we said would happen and there it is”, but in the sense of “the reason why you should believe this formula is because of data” instead of “the reason you should believe this formula is because of the mathematics”.
Therefore, I am staying to what I understand: I don’t have much insight into the application of Kirchoff’s law (which several sources, including Goody & Young in your own quote, say has limited applicability in gaseous situations); and in the issues where I believe I understand what is at stake, I find Miskolczi’s way of applying theorems (specifically the virial theorem) to be rather opaque.
So, I’ll wait until I hear from him about my detailed questions. I’m interested in his explanation of this paper, not of Zagoni’s presentation.
And keep in mind, that for a theoretical argument to be cogent, every step along the way has to be right. If there is one step of the ladder missing, the argument is no good. That in itself doesn’t prove that the conclusion is false – maybe the weak point can be fixed – but in this case, the conclusion is contradicted by the generally accepted understanding of the greenhouse effect. “Extraordinary claims require extraordinary proof”, which means you don’t get a free pass for missing steps…
Neal,
– Regarding the Zagoni slides, you missed the point. I simply wanted an online high-level summary that shows the virial work in context.
– Regarding “Others (I think at RealClimate) have pointed out that Zagoni, or even an alternative presentation of Miskolczi’s, asserts as an experimental observation what in the original paper is presented as a theoretical derivation.”
This is just misinformation that originates on someone or other’s blog. It’s true that on Zagoni’s website is a statement to the effect, “look, even if you reject the theoretical arguments, the empirical support is so strong that you would still have to accept the laws as empirical facts.” However, nothing on Zagoni’s site or in Miskolczi’s New York slides contradicts Miskolczi’s actual papers in any way. I believe Zagoni’s remark is a concession arising from his frustration that climate scientists don’t seem to know even basic physics (i.e. where Kirchhoff’s Law can be applied).
– Regarding “I don’t have much insight into the application of Kirchoff’s law (which several sources, including Goody & Young in your own quote, say has limited applicability in gaseous situations).”
You are quite wrong here. Miskolczi doesn’t apply the Kirchhoff Law in the upper atmosphere any more than Goody & Yung do (see his assumption (c) on p. 3 or have a look at his Y-axes and note that they never extend beyond 60km). Again, Miskolczi is simply following a standard textbook on atmospheric radiation at this point.
As for the “other sources” you must be talking about the “experts” at RealClimate:
Gavin Schmidt: He appears to have made at least two fundamental mistakes. First he assumes that Kirchoff’s Law implies that absorbed radiation is equal to emitted radiation in the atmosphere (it is not – absorptivity and emittance are the same, but not the fluxes). …
That’s fine, but he’s clearly wrong. And all the others who have, yes, said exactly the same as Gavin? Well, who are we going to believe here: the standard textbook or the people who have copied Gavin Schmidt & Nick Stokes?
The standard textbook is using Kirchhoff’s Law to equate the fluxes — in the quote above and in several other sections. I think this echoes what Gary Gulrud has been saying all along in this thread.
If you’d like full references, have a look at the ClimateAudit BB discussion.
– And keep in mind, that for a theoretical argument to be cogent, every step along the way has to be right. If there is one step of the ladder missing, the argument is no good. That in itself doesn’t prove that the conclusion is false – maybe the weak point can be fixed – but in this case, the conclusion is contradicted by the generally accepted understanding of the greenhouse effect.
So you’re saying, if one step in the ladder turns out to be wrong we should throw away the whole ladder? The paper could contain the discovery of several new physical laws — the relationship atmospheric Kirchhoff law Aa = Ed and the general greenhouse equation (eq 21) — but because of your virial objections, we should throw away the whole theory?
Alex Harvey:
– wrt Kirchoff’s law: As I already said, I don’t have much insight into the application here of Kirchoff’s laws. Therefore, nothing among my originally expressed concerns depends on it, one way or the other. My argument is focused solely on what I do understand; and based upon what I do understand, I see some problems in Miskolczi’s full original paper, as stated above (16-07-2008).
– wrt the ladder: If even one step in the ladder is missing, you can’t use the ladder, because it’s not valid. (Think of a real ladder, for instance: If a step in the ladder is missing, even if it’s the stairway to heaven, it’s not going to do you any good.) If you can fix the step, then you’ve got something – but if you can’t, you don’t. Sorry.
And don’t blame it on “[my] virial objection”: I did not choose to structure the argument this way, the whole ladder is due to Miskolczi. I did not remove the step, I’ve just been pointing out that Miskolczi didn’t put one in (or put in a cardboard piece).
If you want a good theory, you can start by fixing (or getting Miskolczi to fix) this step, as well as the other problems I’ve pointed out. Otherwise, it’s the same situation as applied for so many years: “I’ve got this great proof of Fermat’s Last Theorem, surely you can’t disqualify it because of one tiny little mistake at the beginning…” Yes, we can and we must. In the end, Wiles provided a proof that the experts accept, based upon new insights into number theory – So isn’t it a good thing that we didn’t accept all the thousands of would-be proofs that had “minor” flaws in them? In mathematical and theoretical proofs, a proof is right – or it’s nothing.
But cheer up: If the result is really true, there should be a way to prove it. In reading some of Einstein’s early relativity papers, I myself even found a couple of mistakes. That was a thrill! Unfortunately for my Nobel-Prize shelf, I also immediately thought of a way to side-step those mistakes. So, no cigar.
Neal,
I am rather astonished to read this.
You say that you’ve studied the first 10 pages. That would mean you understand that eqs (5) & (6) are trivial arithmetical consequences of eqs (1), (2), (3) & (4). You would understand likewise that eqs (1), (2) & (3) are taken from the standard literature so there’s no controversy there either. It’s only eq (4) — the Kirchhoff Law — that people are concerned about. But if eq (4) was valid, we would have a very nice ladder. No, it wouldn’t lead to heaven, but it would lead to some very important conclusions.
“The physical interpretations of these two equations [(5) & (6)] may fundamentally change the general concept of greenhouse theories.” (p. 6.)
Eq (5) says that upward LW radiation is independent of the LW atmospheric absorption processes. That would mean that the classical theory of the greenhouse effect is wrong! It wouldn’t mean Miskolczi’s final conclusion is right (sure, we would need the rest of the ladder for that), but it certainly would mean that the classical theory is wrong. Goodbye IPCC AR4, goodbye Kiehl & Trenberth (1997). Now you can tell me that I’m wrong (maybe I am, after all, I’m not a physicist) but tell me that it’s not important? Okay, that surprises me. No wonder there’s a huge chapter of gaps in our knowledge of global warming theories if the defenders of the consensus don’t even care!
I trust you have read Miskolczi & Mylnczak (2004)? It’s a sort of required reading for anyone studying this work. At any rate, you would note that the virial theorem is not even mentioned in MM2004. Miskolczi had arrived at his revolutionary conclusions as early as 2002. Quoting his resignation letter (written in late 2005 since it’s dated “effective 1st January 2006”):
“More than three years ago I presented to NASA a new view of the greenhouse theory and pointed to serious errors in the classical approach …” http://hps.elte.hu/zagoni/Proofs_of_the_Miskolczi_theory_elemei/image068.jpg
But the idea for the virial theorem wasn’t even born in 2004. Yet in MM2004 you’ll note his conclusion (p. 249):
“Probably the most important consequence of the semi-transparent atmospheric model is the significant reduction in the expected response in the surface upward flux to greenhouse gas perturbations.”
With or without the virial theorem, for heaven’s sake, eq (4) + eq (21) (which is independent of the earlier equations) = a revolution in understanding.
Alex Harvey:
– I understand through Eq.(3) quite clearly.
– Eq.(4) is under debate by many people on this blog. But I’m not even worrying about it.
– Based on Eq.(4), I will allow through to Eq.(6). But, to follow M’s text, I will not interpret it here, since he does not. I will remark, however, that one of the reviewers wrote: “There is lack of understanding of the physics of atmospheric infrared radiative transfer, which is impacting the quality of the discussions as well as the outlandish claims by the author that his work requires revaluation of radiative-convective equilibrium models…”: Clearly a reference to this section.
– Then comes the Virial Theorem. Aside from the fact that I don’t agree with his factor of ½, I wish he would just say what equations he is using to relate total potential energy to temperature, and total kinetic energy to Eu.
– Eqs.(7) doesn’t make any sense to me at all: It cannot, as far as I can tell, be interpreted as equating the input and output of any system, so I don’t see how it can be interpreted as conservation of energy. Others (see above) have had the same problem.
– Eq.(7) leads to Eq.(8) gives a factor of (3/2) without any conditions. Yet this factor must be (1) if the interaction between the gas and the radiation vanish. However, I do not see how the logic would be disrupted by the vanishing of this interaction. (But then I don’t follow the logic to Eq.(7) at all.) So the question is, If conservation of energy implies Eq.(7), how does Eq.(7) fail when the interaction vanishes?
– Eq.(8) is one of the equations Miskolczi keeps coming back to in deriving his claims to new results. I can’t get there from here, so I don’t see any point in walking on air until it becomes clearer.
– I’ve looked at Miskolczi & Mlynczak: I don’t see that it helps at all with what I’m trying to do, which is to get straight the logic of the first few pages.
– It really doesn’t matter to me about the history of Miskolczi’s ideas: I’m trying to understand his paper, as written. As written, it depends on the Virial Theorem; in a way that I find unclear – nor am I the only person in this position.
– If Eq.(4) and (21) don’t depend on anything coming along before, why not put them upfront?
– If you think you understand M’s paper so well, I’d be pleased to send you my questions directly, and you can answer them in his place. It’s only eight pages.
In the meantime: Extraordinary claims require extraordinary evidence. So far, I’m not seeing the evidence…