Are Water Plumes Spraying from Europa? NASA’s Europa Clipper is on the Case


Finding plumes at Europa is an exciting prospect, but scientists warn it’ll be tricky, even from up close.

In 2005, images of a brilliant watery plume erupting from the surface of Saturn’s moon Enceladus captivated the world. The giant column of vapor, ice particles, and organic molecules spraying from the moon’s south polar region suggested that there’s a liquid water ocean below Enceladus’ ice shell and confirmed the moon is geologically active. The plume also thrust Enceladus and other worlds in the outer solar system, with no atmospheres and far from the heat of the Sun, toward the top of NASA’s list of places to search for signs of life.

Scientists now are preparing for a mission to another ice-covered ocean world with possible plumes: Jupiter’s moon Europa. Scheduled to launch in 2024, NASA’s Europa Clipper spacecraft will study the moon from its deep interior to its surface to determine whether it has ingredients that make it a viable home for life.

Like Enceladus, Europa is geologically dynamic, meaning both moons generate heat inside as their solid layers stretch and flex from the gravitational tug-of-war with their host planets and neighboring moons. This, instead of heat from the Sun, keeps subsurface water from freezing on these ice-covered moons. The heat may also help produce or circulate life’s chemical building blocks at the seafloors, including carbon, hydrogen, oxygen, nitrogen, phosphorus, and sulfur.

But that’s where the similarities end.

“A lot of people think Europa is going to be Enceladus 2.0, with plumes constantly spraying from the surface,” said Lynnae Quick, a member of the science team behind Clipper’s Europa Imaging System (EIS) cameras. “But we can’t look at it that way; Europa is a totally different beast,” said Quick, who’s based at NASA’s Goddard Space Flight Center in Greenbelt, Maryland.

One of the first images of Enceladus’s plume taken by NASA’s Cassini spacecraft on Nov. 27, 2005.

One of the first images of Enceladus’ water jets taken by NASA’s Cassini spacecraft on Nov. 27, 2005. In this image, Enceladus is backlit by the Sun.Credits: NASA/JPL/Space Science Institute.More information here.

Evidence suggests Europa may vent water from its subsurface just like Enceladus. For example, scientists using NASA’s Galileo spacecraftNASA’s Hubble Telescope, and large Earth-based telescopes have reported detections of faint water plumes or their chemical components at Europa.

But no one is certain. “We’re still in the space where there’s really intriguing evidence but none of it is a slam dunk,” said Matthew McKay Hedman, a member of Europa Clipper’s Mapping Imaging Spectrometer for Europa (MISE) science team and associate professor in the Department of Physics at the University of Idaho.

Scientists are drawn to plumes for a couple of reasons. First, they’re undeniably cool: “We’re scientists, but we’re also human,” said Shawn Brooks, who is working with Europa Clipper’s Europa Ultraviolet Spectrograph (Europa-UVS) science team and is based at NASA’s Jet Propulsion Laboratory in Southern California.

But more practically, Brooks said, plumes offer scientists easier access to Europa’s interior. “It all comes down to whether Europa is habitable, and that comes down to having some understanding of what is happening below the surface, which we can’t reach yet,” he said.

In other words, the magic of Europa, an archetype for a potentially habitable world, is hidden from view deep within the moon. Compared to Enceladus, which is the size of Texas, Europa is about a quarter of Earth’s size, or a bit smaller than Earth’s moon. And evidence suggests Europa has a much deeper saltwater ocean than Enceladus, possibly 40 to 100 miles (about 60 to 160 kilometers) deep, which means it could contain about twice as much water as Earth’s oceans. Some scientists hypothesize that Europa’s ocean could be reacting with superheated rocks below its seafloor, possibly through hydrothermal vents. On Earth, such areas are hotbeds of chemical activity that nourishes innumerable creatures.

Scientists say there also could be large pockets of melted water in Europa’s ice shell, which are more likely than the ocean to be the source of plumes. These pockets could produce cozy habitats for organisms as well.

Because it’s much closer to Jupiter than Enceladus is to Saturn, more heat is generated at Europa from friction produced as it circles its host planet. Given that internal heat  stimulates geological activity on rocky worlds, Europa is expected to have more extensive geology than Enceladus. Some scientists predict that Europa has plate tectonics that shift and recycle the icy blocks making up the moon’s surface. If so, Europa could be circulating nutrients produced on the surface by radiation from Jupiter, such as oxygen, to pockets of liquid in the ice shell or perhaps to the ocean itself. Through Europa Clipper, scientists will have a chance to test some of their predictions by analyzing the chemical makeup of plumes or the traces they may leave on the surface.

Composite image shows suspected plumes of water vapor erupting at the 7 o’clock position off the limb of Jupiter’s moon Europa.

This composite image shows suspected plumes of water vapor erupting at the 7 o’clock position off the limb of Jupiter’s moon Europa. The plumes, photographed by NASA’s Hubble Space Telescope Imaging Spectrograph, were seen in silhouette as the moon passed in front of Jupiter. The Hubble data were gathered on January 26, 2014. The image of Europa, superimposed on the Hubble data, is assembled from data from the Galileo and Voyager missions.Credits: NASA/ESA/W. Sparks (STScI)/USGS Astrogeology Science Center.More information here.

Scientists warn that Europan plumes, even if they’re there, could be hard to detect even from up close. They may be sporadic, and they may be small and thin, given that Europa’s gravity, which is much stronger than Enceladus’, likely would keep these water plumes close to the surface. That’s a drastic departure from Enceladus’ spectacular vapor column: It’s always on and bigger than the moon itself, spraying icy particles hundreds of miles above the surface. “Even if they’re there, Europa’s plumes may not be that photogenic,” Hedman said.

Though Europa Clipper scientists are devising a variety of creative strategies to find active plumes when the spacecraft begins exploring Europa in 2031, they’re not relying on them to understand what’s going on inside the moon. “We don’t have to catch one for a successful mission,” Quick said.

Quick added that every instrument aboard Clipper can contribute evidence of habitable conditions below the surface regardless of active plumes.

A few examples of how the science team will search for potential plumes include Europa Clipper’s camera suite, EIS. It will scout for plumes near Europa’s surface partly by looking for their silhouettes at Europa’s limb, or edge, when the moon is illuminated by the light of Jupiter as it passes in front of the planet. EIS will snap photos of plumes should they appear, as well as plume deposits that might be visible on the surface. The Europa-UVS will also strive to detect plumes in ultraviolet light, including at the edge of the moon when Europa passes in front of nearby stars, and it can measure the chemical makeup of such plumes. A thermal camera, the Europa Thermal Emission Imaging System (E-THEMIS), will look for hotspots on the surface that may be evidence of active or recent eruptions.

The Europa Clipper team is set to succeed whether or not researchers find plumes at Europa, though many scientists hope for a spectacular water show to enrich the mission and our understanding of Europa. “I do suspect Europa is active and letting some material escape,” Hedman said. “But I expect that when we actually get to understand how it’s doing that, it’s not going to be what anyone expected.

Life as we know it requires liquid water. Astrobiology, a field of science and engineering that describes efforts to find ingredients of life beyond Earth, is a search for planets, dwarf planets, and moons that harbor substantial liquid water. Scientists call these places “ocean worlds.”Credits: NASA’s Goddard Space Flight Center.

More About the Mission

Missions such as Europa Clipper contribute to the field of astrobiology, the interdisciplinary research on the variables and conditions of distant worlds that could harbor life as we know it. While Europa Clipper is not a life-detection mission, it will conduct detailed reconnaissance of Europa and investigate whether the icy moon, with its subsurface ocean, has the capability to support life. Understanding Europa’s habitability will help scientists better understand how life developed on Earth and the potential for finding life beyond our planet.

Managed by Caltech in Pasadena, California, JPL leads the development of the Europa Clipper mission in partnership with the Johns Hopkins Applied Physics Laboratory in Laurel, Maryland, for NASA’s Science Mission Directorate in Washington. The Planetary Missions Program Office at NASA’s Marshall Space Flight Center in Huntsville, Alabama, executes program management of the Europa Clipper mission.

More information about Europa can be found here:

Banner image caption: On the left is a view of Europa taken on March 2, 1979, by the Voyager 1 spacecraft. Next is a color image of Europa taken by the Voyager 2 spacecraft during its close encounter on July 9, 1979. On the right is a view of Europa made from images taken by the Galileo spacecraft in the late 1990s. Image credit: NASA/JPL. Download images of Europa here

By Lonnie Shekhtman
NASA’s Goddard Space Flight Center, Greenbelt, Md.

5 5 votes
Article Rating
Newest Most Voted
Inline Feedbacks
View all comments
Michael S. Kelly
December 1, 2021 2:34 am

And now the mission is likely to actually happen, thanks to the quiet substitution of Falcon Heavy for SLS as the launch vehicle. NASA’s SLS (Space Launch System, aka the Senate Launch System) is a congressionally-mandated rocket that is supposedly going to return people to the Moon. Its first flight date keeps receding into the future, and may continue to do so ad infinitum to keep NASA and influential US aerospace companies employed.

Last edited 1 month ago by Michael S. Kelly
Reply to  Michael S. Kelly
December 1, 2021 5:25 am

I heard SpaceX have serious problems with Raptor engine production.

Paul Penrose
Reply to  fretslider
December 1, 2021 9:50 am

Currently they can’t produce them fast enough for the Starship program which requires up to thirty-some engines per booster. But this really only affects the speed at which Starship can be developed and fielded. Since Europa Clipper is being launched on a Falcon Heavy, and there are plenty of Falcon 9 boosters available, it is not affected in any way by the the production rate of Raptor engines.

Joseph Zorzin
December 1, 2021 5:57 am

“And evidence suggests Europa has a much deeper saltwater ocean than Enceladus, possibly 40 to 100 miles (about 60 to 160 kilometers) deep”

Who would have thought this a few decades ago? It’s as mind blowing to me as dark matter and dark energy.

Reply to  Joseph Zorzin
December 1, 2021 12:44 pm

Yes, it’s really fascinating stuff.

And of course Freemon Dyson years ago (with tongue frimly in cheek) postulated that there could be frozen fish orbiting Europa. Ergo life in ocean maybe bacteria (but why not fish?)…which then get blasted into space with meteorite impacts onto Europa’s surface…

Reply to  Alastair Brickell
December 1, 2021 5:34 pm

There was a scifi story (probably in Analog) decades ago about a space station in Saturn’s rings. The initiation for newcomers to the station involved drinking a cocktail containing worms found in the snowballs of the rings. At the end of the story, it’s revealed that the worms are actually wet spaghetti.

December 1, 2021 8:39 am

This, too, from ARsTechnica: 

Asteroid-sample return shows water on its rocks’ surface

A cubic meter of asteroid dust may have as much as 20 liters of water.

. . .

Fast-forward a decade and we now have asteroid samples brought back to Earth by two different probes. Working with some of the material obtained by Japan’s Hayabusa mission, researchers have found a thin, water-rich layer is present there, too, consistent with being put in place by the solar wind. The researchers behind the finding suggest that this means many Solar System bodies are likely to be fairly water-rich—a reservoir that could have made a big contribution to Earth’s oceans.

At least two thirds less than Earth by volume, so pretty dry.

Peta of Newark
December 1, 2021 9:10 am

Oh look, another squirrel..

Gotta love this..
Quote:”life’s chemical building blocks at the seafloors, including carbon, hydrogen, oxygen, nitrogen, phosphorus, and sulfur.”

While here on Earth all those things are hideous pollutants
Methinks they should start their Search For Life inside the hallowed halls of NASA itself

OK ok, intelligent life

Reply to  Peta of Newark
December 1, 2021 6:46 pm

Depends on what form those elements take (as has been known since Arrhenius), not to mention their concentration. Phosphorus makes a wicked bomb or flare; sulfur is not something you’d want to eat in any significant quantity. Hydrogen can blow up, and breathing 100% oxygen over a long time causes lung damage and eventually death. Carbon is pretty harmless by itself, but carbon monoxide is a deadly poison. Nitrogen is pretty harmless at atmospheric pressure, unless you’re breathing pure nitrogen, in which case you’ll quietly die. It also has a narcotic effect when breathed under pressure (as SCUBA divers know).

Gary Pearse
December 1, 2021 9:42 am

“We’re still in the space where there’s really intriguing evidence but none of it is a slam dunk,”

Exactly where their colleagues at GISS are with climate science. Climate models and what they tell us are not evidence. Having not accepted a very clear falsification of their CO2 control knob by their own disappointing projections and having adjusted all that they dare to to cling to the theory, all that’s left is hope and prayers.

Gary Pearse
December 1, 2021 9:47 am

Does the water vapor from the sprays not form an atmosphere? It probably largely snows out but should be in near equilibrium with sublimation/evaporation.

Reply to  Gary Pearse
December 1, 2021 11:58 am

It is also possible that it is pulled away into Jupiter orbit and thus doesn’t have a chance to fall out.

December 1, 2021 1:31 pm

Get your reservations in early at the Europa Hotel. We expect heavy demand.

Reply to  pochas94
December 1, 2021 6:47 pm

Attempt no landings there.

Robert Alfred Taylor
December 1, 2021 3:41 pm

NASA’s Stunning Discoveries on Jupiter’s Largest Moons Our Solar System’s Moons – ASTRUM – 2021-11-05 –

James F. Evans
December 1, 2021 6:24 pm

On the original pictures, it is described as “jets” not plumes, as in collimated jets.

Collimated: (of rays of light or particles) made accurately parallel.

Does that suggest a different physical mechanism? As opposed to the “garden hose” vents that NASA & others lean towards regarding a possible explanation.

There seems to be little diffusion over distance from the surface.

Could this observation be due to electromagnetic forces operating on ionized matter?

In other words, an ionized plasma jet.

Enceladus orbits within Saturn’s magnetosphere possibly acting like a homopolar motor generating electromagnetic energy.

December 2, 2021 10:50 am

“This, instead of heat from the Sun, keeps subsurface water from freezing on these ice-covered moons. The heat may also help produce or circulate life’s chemical building blocks at the seafloors, including carbon, hydrogen, oxygen, nitrogen, phosphorus, and sulfur.”

This cannot be. Everyone ‘knows’ that geologic heat is incidental to the whole & can reasonably be discounted as an insignificant variable.

%d bloggers like this: