New lithium battery design eats up carbon dioxide while charging

Lithium-based battery could make use of greenhouse gas before it ever gets into the atmosphere

CAMBRIDGE, Mass. — A new type of battery developed by researchers at MIT could be made partly from carbon dioxide captured from power plants. Rather than attempting to convert carbon dioxide to specialized chemicals using metal catalysts, which is currently highly challenging, this battery could continuously convert carbon dioxide into a solid mineral carbonate as it discharges.

While still based on early-stage research and far from commercial deployment, the new battery formulation could open up new avenues for tailoring electrochemical carbon dioxide conversion reactions, which may ultimately help reduce the emission of the greenhouse gas to the atmosphere.

The battery is made from lithium metal, carbon, and an electrolyte that the researchers designed. The findings are described today in the journal Joule, in a paper by assistant professor of mechanical engineering Betar Gallant, doctoral student Aliza Khurram, and postdoc Mingfu He.

Currently, power plants equipped with carbon capture systems generally use up to 30 percent of the electricity they generate just to power the capture, release, and storage of carbon dioxide. Anything that can reduce the cost of that capture process, or that can result in an end product that has value, could significantly change the economics of such systems, the researchers say.

However, “carbon dioxide is not very reactive,” Gallant explains, so “trying to find new reaction pathways is important.” Generally, the only way to get carbon dioxide to exhibit significant activity under electrochemical conditions is with large energy inputs in the form of high voltages, which can be an expensive and inefficient process. Ideally, the gas would undergo reactions that produce something worthwhile, such as a useful chemical or a fuel. However, efforts at electrochemical conversion, usually conducted in water, remain hindered by high energy inputs and poor selectivity of the chemicals produced.

Gallant and her co-workers, whose expertise has to do with nonaqueous (not water-based) electrochemical reactions such as those that underlie lithium-based batteries, looked into whether carbon-dioxide-capture chemistry could be put to use to make carbon-dioxide-loaded electrolytes — one of the three essential parts of a battery — where the captured gas could then be used during the discharge of the battery to provide a power output.

This approach is different from releasing the carbon dioxide back to the gas phase for long-term storage, as is now used in carbon capture and sequestration, or CCS. That field generally looks at ways of capturing carbon dioxide from a power plant through a chemical absorption process and then either storing it in underground formations or chemically altering it into a fuel or a chemical feedstock.

Instead, this team developed a new approach that could potentially be used right in the power plant waste stream to make material for one of the main components of a battery.

While interest has grown recently in the development of lithium-carbon-dioxide batteries, which use the gas as a reactant during discharge, the low reactivity of carbon dioxide has typically required the use of metal catalysts. Not only are these expensive, but their function remains poorly understood, and reactions are difficult to control.

By incorporating the gas in a liquid state, however, Gallant and her co-workers found a way to achieve electrochemical carbon dioxide conversion using only a carbon electrode. The key is to preactivate the carbon dioxide by incorporating it into an amine solution.

“What we’ve shown for the first time is that this technique activates the carbon dioxide for more facile electrochemistry,” Gallant says. “These two chemistries — aqueous amines and nonaqueous battery electrolytes — are not normally used together, but we found that their combination imparts new and interesting behaviors that can increase the discharge voltage and allow for sustained conversion of carbon dioxide.”

They showed through a series of experiments that this approach does work, and can produce a lithium-carbon dioxide battery with voltage and capacity that are competitive with that of state-of-the-art lithium-gas batteries. Moreover, the amine acts as a molecular promoter that is not consumed in the reaction.

This scanning electron microscope image shows the carbon cathode of a carbon-dioxide-based battery made by MIT researchers, after the battery was discharged. It shows the buildup of carbon compounds on the surface, composed of carbonate material that could be derived from power plant emissions, compared to the original pristine surface (inset). Courtesy of the researchers

The key was developing the right electrolyte system, Khurram explains. In this initial proof-of-concept study, they decided to use a nonaqueous electrolyte because it would limit the available reaction pathways and therefore make it easier to characterize the reaction and determine its viability. The amine material they chose is currently used for CCS applications, but had not previously been applied to batteries.

This early system has not yet been optimized and will require further development, the researchers say. For one thing, the cycle life of the battery is limited to 10 charge-discharge cycles, so more research is needed to improve rechargeability and prevent degradation of the cell components. “Lithium-carbon dioxide batteries are years away” as a viable product, Gallant says, as this research covers just one of several needed advances to make them practical.

But the concept offers great potential, according to Gallant. Carbon capture is widely considered essential to meeting worldwide goals for reducing greenhouse gas emissions, but there are not yet proven, long-term ways of disposing of or using all the resulting carbon dioxide. Underground geological disposal is still the leading contender, but this approach remains somewhat unproven and may be limited in how much it can accommodate. It also requires extra energy for drilling and pumping.

The researchers are also investigating the possibility of developing a continuous-operation version of the process, which would use a steady stream of carbon dioxide under pressure with the amine material, rather than a preloaded supply the material, thus allowing it to deliver a steady power output as long as the battery is supplied with carbon dioxide. Ultimately, they hope to make this into an integrated system that will carry out both the capture of carbon dioxide from a power plant’s emissions stream, and its conversion into an electrochemical material that could then be used in batteries. “It’s one way to sequester it as a useful product,” Gallant says.

###

The study: https://www.sciencedirect.com/science/article/pii/S2542435118304057?via%3Dihub

MIT’s Department of Mechanical Engineering provided support for the project.

Written by David L. Chandler, MIT News Office

Related: Research update: Team observes real-time charging of a lithium-air battery

http://news.mit.edu/2013/real-time-charging-of-lithium-air-battery-0513


Interesting concept, but with only 10 charge/discharge cycles available, highly impractical.

0 0 votes
Article Rating
125 Comments
Oldest
Newest Most Voted
Inline Feedbacks
View all comments
Hans Erren
September 21, 2018 11:57 am

This process costs energy, right?

Rocketscientist
Reply to  Hans Erren
September 22, 2018 9:07 am

Yes, I understood that immediately. There are a whole lot of ‘coulds’ piled up in this as well which usually means “it doesn’t work yet and not as well as we’d hoped”.

yjim
Reply to  Rocketscientist
September 22, 2018 9:45 pm

But it sounds good and the emotions are right so lets increase the child labor in the lithium mines to make us all feel good.

Tom Halla
Reply to  yjim
September 23, 2018 2:34 am

It’s child labor in the cobalt mines of the Congo, not lithium.

gnomish
Reply to  Tom Halla
September 24, 2018 8:11 am

as long as it turns those black carbons with angry red eyeballs into a kale slushy, tho

John Tillman
September 21, 2018 12:04 pm

Other possible improvements ot lithium batteries being studied are more promptly promising. Advances in other kinds of batteries and capacitors are also being made, both incremental to existing type and potentially revolutionary new approaches to energy storage, release and recharging.

Why remove plant food from the air, anyway, unless it really does produce a useful product? So far the only observable effects of more atmospheric CO2 have been beneficial.

Hocus Locus
Reply to  John Tillman
September 21, 2018 12:58 pm

Maybe the calcium carbonate recovered from this process could be packed and processed in bulk, sold on a brand new chemical market to water distribution plants, where it would be added to the water supply to help prevent tooth decay? Anything is possible — because now, according to scientists, the Placebo Effect is Growing in Potency Among Americans.

Hans Erren
Reply to  Hocus Locus
September 21, 2018 1:16 pm

To prevent tooth decay fluoride is far more effective.

gnomish
Reply to  Hocus Locus
September 21, 2018 3:33 pm

be real. calcium carbonate is cheap by the ton- free if you want to collect the shells.
this is pure fantasy in every way.

Reply to  Hocus Locus
September 21, 2018 5:20 pm

The system produces lithium carbonate, Li2CO3.

Reply to  Pat Frank
September 21, 2018 7:25 pm

Looking at the article, the system also deposits elemental carbon onto the carbon electrode surface. The chemistry includes making a carbamate using a primary amine.

This carbamate is the source of reduced CO2, to produce elemental carbon. The necessary four electrons come from lithium metal.

I’d suppose the problem they note, that the battery supports only 10 discharge-recharge cycles, comes from the deposition of carbon onto the electrode. Deposited carbon probably modifies and passivates the surface of the carbon black electrode.

Look at the head-post picture of the post-discharge electrode. The previously particulate carbon now has spicules of carbon everywhere on them. They’re literally hairy. Likely, those carbon hairs have different, and electrochemically inactive, surface.

Their supporting information, Figure S8, here (1.6 mb pdf), gives a good idea of the state of their art.

It’s going to be a very long time (if ever) before the many-times great grandchild of that system makes a dent in atmospheric CO2.

Diagnosis? Press release hyperbole. Gallant and her co-workers should be pink of cheek about it.

Joe
Reply to  Pat Frank
September 22, 2018 2:57 am

Which, if fed to climate doomsayers, might cause them to feel less depressed about it.

Gerard J. O'Dowd
Reply to  Pat Frank
September 23, 2018 10:45 am

Can it become a method to recycle the Lithium ions?

Kalifornia Kook
Reply to  John Tillman
September 22, 2018 9:51 am

“Why remove plant food from the air”? Precisely. I see that as the greatest threat. It’s OK if it is being removed for something useful (plant food), but otherwise potentially dangerous.

Curious George
September 21, 2018 12:04 pm

Efforts to circumvent the Second Law of Thermodynamics continue.

Reply to  Curious George
September 21, 2018 12:09 pm

Repeal the 2nd Law.

Greg Woods
Reply to  Joel O'Bryan
September 21, 2018 12:22 pm

I proposed stopping entropy, but nobody agreed with me…

Randle Dewees
Reply to  Greg Woods
September 21, 2018 3:19 pm

rim shot!

gnomish
Reply to  Greg Woods
September 21, 2018 3:34 pm

and yet, you live!
life forms- reversing entropy is what we do!

John Tillman
Reply to  gnomish
September 21, 2018 3:45 pm

Gnomish,

Using Gibbs free energy to do so.

Natural selection responsible for local increase in order may be mathematically derived directly from the 2nd Law equation for connected non-equilibrium open systems:

Natural selection for least action

http://rspa.royalsocietypublishing.org/content/464/2099/3055

gnomish
Reply to  gnomish
September 21, 2018 3:57 pm

Robert of Ottawa
Reply to  gnomish
September 21, 2018 4:54 pm

Gnomish, the only thing in this universe that combats entropy is life. We are made from the inanimate matter of the unoverse but bring forth consciousness of that universe. And having done that, we created BACH!

We are the gods of which we dream.

gnomish
Reply to  gnomish
September 21, 2018 7:37 pm

Robert of Ottawa
i made that vid.

Louis Hunt
Reply to  gnomish
September 21, 2018 9:00 pm

“Conquest of Entropy”?
That seems a bit exaggerated. Visit any graveyard to see that entropy still wins in the end.

gnomish
Reply to  gnomish
September 22, 2018 3:09 am

i’m a denihilist.
but, seriously- won’t you think of the children?
when the universe runs down, we’ll just change the batteries. 🙂

JAM
Reply to  gnomish
September 22, 2018 7:12 am

Actually they don’t. Entropy grows in a closed system without external energy input. Life cannot exist in such system.

Reply to  Greg Woods
September 22, 2018 6:39 am

I proposed stopping entropy, but nobody agreed with me…

The effort just spread out & dissipated…..

Jeff Alberts
Reply to  Greg Woods
September 22, 2018 12:50 pm

Entropy Apathy?

John Tillman
Reply to  Joel O'Bryan
September 21, 2018 12:38 pm

Couldn’t we just amend it?

Reply to  John Tillman
September 21, 2018 12:54 pm

2/3 approval required to amend.

I like the consistency of the 2nd law, so I’ll withhold my vote to amend.

Robert of Ottawa
Reply to  John Tillman
September 21, 2018 4:58 pm

LOL Yes! Repeal the law of physics.

Reply to  Robert of Ottawa
September 21, 2018 5:29 pm

Happening as we speak in sociology and cultural studies departments all across the land.

All of science is just socially-determined.

Except, of course, when the professors of said departments need medical attention.

John Tillman
Reply to  Robert of Ottawa
September 21, 2018 9:06 pm

“Democratic” Socialists (oxymoronic impossibility) want to repeal the Law of Supply and Demand.

oeman50
Reply to  Robert of Ottawa
September 22, 2018 9:02 am

Wasn’t it the Tennessee legislature that passed a law making pi exactly equal to 3.14, without all those annoying extra decimal places ?

Phil.
Reply to  Robert of Ottawa
September 22, 2018 7:37 pm

Could have been worse they could have adopted the biblical value of 3.

Robert of Ottawa
Reply to  Joel O'Bryan
September 21, 2018 4:49 pm

Exactly. When do these dishonest shysters admit that they are doing this for the money adn they know there is no hope of discovering pixie-dust. How much mis-directed investment has been thrown away, money that coyuld have done usefule things.

Catcracking
Reply to  Robert of Ottawa
September 21, 2018 9:01 pm

Bingo,
How did we ever survive before we dumped $$$ into useless projects like this.
We need better vetting of our tax dollars in this arena looking for pixie dust.
Coming from an engineer that once designed a successful (not necessarily economic) mechanical contraption to capture CO2 from the atmosphere.

Reply to  Catcracking
September 23, 2018 9:29 am

As Edison said, “I have gotten a lot of results! I know several thousand things that won’t work.”

Rich Davis
Reply to  Joel O'Bryan
September 21, 2018 5:56 pm

For The Chidrun

William Ward
Reply to  Joel O'Bryan
September 21, 2018 11:31 pm

Repeal? Nah.

Be a Social Justice Warrior and use Mob Rule. Why repeal when you can boycott, protest, shame, virtue signal and riot the law away. Think a law is needed but it has not been created through our representative democracy (Republic)? Then get busy and hashtag it into existence.

Marty
Reply to  Curious George
September 21, 2018 1:40 pm

Instead of repealing or amending the Second Law of Thermodynamics, it would be easier to just send it to the ninth circuit court in California where the judges will re-interpret it to require perpetual motion. Problem solved.

John Tillman
Reply to  Marty
September 21, 2018 1:48 pm

Marty,

Excellent suggestion. For the best chance at receiving the desired reinterpretation, might I recommend the 9th Circuit’s California Northern District Court?

https://www.cand.uscourts.gov/home

Some of the other districts are less reliably reinterpretationist.

nw sage
Reply to  John Tillman
September 21, 2018 5:09 pm

They would be certain to reinterpret the Law as long as it is clear that the law only applies to Muslims or transexual folks. All we have to do is say so and they will believe it.

Tom in Florida
Reply to  Marty
September 21, 2018 3:17 pm

Not so fast amigo. Most of the Ninth Circus Court decisions are overturned by the USSC so it would be just another waste of time and money.

John Tillman
Reply to  Tom in Florida
September 21, 2018 3:28 pm

Then it’s back to repeal and replace or amend.

Might as well toss the other three laws, too.

There should be no absolutes! Alles ist relativ!

marque2
Reply to  Tom in Florida
September 21, 2018 3:57 pm

Another reason to dump Kavinaugh!

ShanghaiDan
Reply to  Tom in Florida
September 21, 2018 4:28 pm

Besides, State’s Rights! CA should pass that repeal of the 2nd law on its own and make it applicable within the State itself, and that will lead the way for other States to follow!

John Tillman
Reply to  Marty
September 21, 2018 3:32 pm

Perpetual motion?

https://www.sciencenews.org/article/time-crystal-created-lab

Time crystals don’t violate the 1st or 2nd laws, but are still pretty amazing.

EdA the New Yorker
Reply to  Curious George
September 21, 2018 8:28 pm

Enforcement of the law is critical.

“Gentlemen, let’s get this thing straight once and for all. The policeman isn’t there to create disorder; the policeman is there to preserve disorder.”
– Mayor Richard J. Daley, Chicago, 1968

Jeff Labute
September 21, 2018 12:05 pm

10 charge/discharge cycles. So if I get one now, I can drive 2000 miles total for every $15,000 I spend on battery.
I really don’t see them conquering any hurdles in terms of increased capacity with their liquid cathode, or improving safety. This is just another red herring battery technology.

Lee L
Reply to  Jeff Labute
September 21, 2018 1:26 pm

So how many new CO2 spewing drivers, by 2040, could be taken off the roads of the future with $15,000 worth of free contraception today in the countries whose populations, of people and their automobiles, is poised to explode? ( China, India, African continent)?

John Tillman
Reply to  Lee L
September 21, 2018 1:33 pm

Lee,

China’s population pyramid looks like a pagoda:

comment image

Pop Piasa
Reply to  Lee L
September 21, 2018 3:40 pm

Lee please watch Hans Rosling’s presentation

Reply to  Pop Piasa
September 21, 2018 4:58 pm

Brilliant – This is a very well presented, informative video – thank you for posting here.

Lance of BC
Reply to  Pop Piasa
September 22, 2018 9:32 am

……

Tom Halla
September 21, 2018 12:06 pm

So how much does it actually cost?

Jeff Labute
Reply to  Tom Halla
September 21, 2018 12:13 pm

No price on new chemistry yet. Being based on lithium, I would guess it wouldn’t be much different than what Tesla charges for a new battery pack.

D. Anderson
Reply to  Tom Halla
September 21, 2018 12:27 pm

The question is way way way premature.

” still based on early-stage research and far from commercial deployment,”

Wade
Reply to  Tom Halla
September 21, 2018 1:10 pm

If you have to ask, you can’t afford it.

September 21, 2018 12:08 pm

Nothing like poisoning your battery, thus limiting charges-recharge cycles, with anodic oxidation.

Roger Knights
September 21, 2018 12:10 pm

At https://seekingalpha.com/stocktalk/100860884 I posted:

A press release out Sept. 18 or so at https://www6.slac.stanford.edu/news/2018-09-17-x-rays-uncover-hidden-property-leads-failure-lithium-ion-battery-material.aspx is titled “X-rays uncover a hidden property that leads to failure in a lithium-ion battery material”
It says, “Now, X-ray experiments at the Department of Energy’s SLAC National Accelerator Laboratory and Lawrence Berkeley National Laboratory have revealed that the pathways lithium ions take through a common battery material are more complex than previously thought. The results correct more than two decades worth of assumptions about the material and will help improve battery design, potentially leading to a new generation of lithium-ion batteries.
“An international team of researchers, led by William Chueh, a faculty scientist at SLAC’s Stanford Institute for Materials & Energy Sciences and a Stanford materials science professor, published these findings today in Nature Materials.”

Seven comments followed my post, at https://seekingalpha.com/stocktalk/100860884

meteorologist in research
September 21, 2018 12:21 pm

CO2, the more the better. This shouldn’t allowed.

Edwin
September 21, 2018 12:29 pm

China and India will not longer need to steal our intellectual property they will just demand the students at major USA universities return home with the patents.

Reply to  Edwin
September 21, 2018 12:47 pm

Almost universally, the university owns the controlling commercial interest in the patent, while the name of the inventors on the patents remains. Quite common then for PI’s with patents to spin off commercial companies from the university to commercialize the technology, getting VC funding, while university gets the patent royalties.

So in no way can a student “take their patent” back with them to their home country. But that doesn’t stop China from ignoring IP rights and copying it in their own factories.

Catcracking
Reply to  Joel O'Bryan
September 21, 2018 9:11 pm

Same as working for the Companies I have worked for.
To get release, need to get agreement with company which they wont do if the patent is of any use.

Dr. Dave
September 21, 2018 12:33 pm

Ah… MIT press releases are the master of using words such as “could be”, which is found in the very first sentence.

tty
September 21, 2018 12:43 pm

The crucial sentence:

“The discharge reaction forms solid-phase Li2CO3 as the primary discharge product”

So what do you do then? Throw the battery away? Or regenerate the lithium and liberate the CO2?

Another fun effect, during the charge/discharge cycle each pound of lithium turns into five pounds of lithium carbonate. For a battery that contains as much lithium as a 70 kWh Tesla battery pack that is an extra 550 lbs!

Personally I can’t imagine why they keep trying. It is easy to show that even with the most energetic reaction theoretically possible (Li + O2 -> LiO2), 100 % efficiency in charging and discharging (not even theoretically possible) and completely weightless electrolyte and battery structure (even more theoretically impossible) no battery will ever equal the energy density of gasoline.

John Tillman
Reply to  tty
September 21, 2018 1:17 pm

Tty,

So much money is being spent on battery research for valid reasons as well as to combat “climate change”.

For starters, submarines and military vehicles.

But for private and commercial automobiles and trucks as well, because the weight of the whole system is what matters, not just the fuel or power supply. At present, the mass of batteries and motor in an EV about equals that of a full fuel tank, an ICE and transmission. (Of course the fuel weighs less as it’s used up.) Decreasing the weight of batteries while increasing energy density, charging time, range and other performance factors is thus a consummation devoutly to be wished.

Besides which, it’s beneficial to concentrate pollution from power generation to point sources, where it’s more readily controlled, rather than distribute it among a hundred million vehicles.

In the present state of technology, however, I favor natural hybrid gas-powered vehicles over EVs and electrical hybrids.

tty
Reply to  John Tillman
September 21, 2018 1:33 pm

As for submarines they still use lead accumulators. Nothing that is better and equally safe has yet been invented.
If you wonder why, read the USAF regulations for airlifting lithium batteries.

John Tillman
Reply to  tty
September 21, 2018 1:42 pm

Tty,

Safety is another reason for battery research. Reducing the risk of fire and explosion in Li-ion batteries or developing less flammable designs, such as sodium-ion.

Sodium of course is also cheaper. The sodium-ion battery designed at Stanford can store as much energy as a lithium-ion battery for less than 80 percent of the cost.

John Tillman
Reply to  tty
September 21, 2018 4:54 pm

Tty,

Japan’s Soryu class uses Li-ion batteries:

http://www.thedrive.com/the-war-zone/7747/japan-goes-back-to-the-future-with-lithium-ion-battery-powered-submarines

Oz went with a French AIP design instead.

WXcycles
Reply to  tty
September 21, 2018 9:25 pm

” … As for submarines they still use lead accumulators. Nothing that is better and equally safe has yet been invented. If you wonder why, read the USAF regulations for airlifting lithium batteries. … ”

Not all Li battery types are susceptible to thermal run-away.

The French originated ‘Short-Fin Barracuda’ submarine Australia is going to build will use such Li batteries to make up for the fact that we really need nuke propulsion but don’t have the spine to just buy and operate them, like a mature first-world country.

John Tillman
Reply to  WXcycles
September 21, 2018 9:30 pm

WX,

I must agree.

Oz’ sub ops are far enough from home waters that the RAN really should go with nukes.

Oz’ threat isn’t Indonesia but China. A forward strategy for Oz would see her subs deployed in the straits letting out from the South China Sea, not in home coastal waters.

Nukophobia has cost Australians dearly.

WXcycles
Reply to  WXcycles
September 21, 2018 10:02 pm

John, I’m not a sub expert (and this is getting well off topic), but it’s an on-going source of disgust for me that Canberra refuses to provide our sub force the nuke propulsion capability it needs, then wonders why the engines in the existing subs had to be replaced in there early years just to get even a modicum of viable performance from them. And they still can’t man even the 6 existing diesel-electrics, and keep them operating and available. But now they plan to buy 12 even bigger diesel-electrics instead. Canberra never learns. So I’ve very low expectations, at this point. I think if we won’t do it right then we should just stop wasting $50 billion on new subs and put it into something that will be available and effective at doing the things the subs were supposed to do. The Canberra and the RAN are wasting everyone’s time and money. I’d rather forego the subs altogether and do something else–the right way.

John Tillman
Reply to  WXcycles
September 21, 2018 10:13 pm

WX,

I’m with you, but Oz can’t be expected just to sub (!) contract out its submarine defense force to the US.

With a limited defense budget, what is Oz to do?

Quite possibly its best bang for buck would be high altitude SAM defense against invading Chinese airliners filled with commandos.

Hard choices, with a complicated calculus of national sovereignty and pride versus the most band for defense Oz dollar buck. Or whatever Oz dollars are called in Oz.

John Tillman
Reply to  WXcycles
September 21, 2018 10:14 pm

For “band” obviously please read “bang”.

Hoping for our host soon to bring back the edit feature.

Walter Sobchak
Reply to  John Tillman
September 21, 2018 2:15 pm

How about welfare for white men in white coats.

marque2
Reply to  John Tillman
September 21, 2018 4:06 pm

Tty is right. The most energy capable redox reactions have been listed in Chemistry books for 💯+ years. They might make minor improvements to approach 100% efficiency and make them slightly lighter – but a game changing breakthrough is impossible unless we change the laws of Chemistry and physics

John Tillman
Reply to  marque2
September 21, 2018 4:24 pm

Marque,

A lot lighter is possible if graphene pans out. It’s already been shown to improve Li-ion battery operation in various ways, but a graphene battery might be feasible.

There’s also a lot of room for growth in efficiency. The steady, non-revolutionary increase in battery performance is liable to continue, even with a breakthrough such as a graphene battery.

Batteries and supercapacitors don’t have to achieve equal energy density with gasoline to produce an overall superior power-to-weight ratio system, since ICE engines are two, three or even four times heavier than electric motors, and transmission and drive trains add even more weight relative to electric.

tsk tsk
Reply to  John Tillman
September 21, 2018 9:52 pm

Nothing requires a fully mechanical power train. And ICE seems to be on the verge of significant efficiency improvements with Mazda’s pseudo-HCCI. Even pickups are starting to use smaller 4cyl engines because the power density has steadily increased in recent years. The most advanced batteries can’t compare with the energy density and power-to-weight of ICE powertrains of decades ago, and it’s not as if they’ve been standing still since then.

John Tillman
Reply to  John Tillman
September 21, 2018 10:09 pm

Tsk,

Setting aside batteries, there is no comparison between the rest of the propulsion system of ICEs and EVs. To include moving parts, liquids required, maintenance and cost of operation.

Against these facts is the higher cost of EVs in the first place.

Here’s where we stand today. Range is really no longer an issue, if the EV manufacturer data are to be believed. Tesla’s (I’m not a fan of Musk, to put it mildly) and other advanced EVs now boast ranges comparable to gasoline-powered vehicles. The key performance distinction is recharge/refill time, which is a solvable problem.

But economically, the barrier is the much higher initial purchase cost of EVs, which uneconomic governments have tried to alleviate.

IMO the recharge issues will be solved, and charging stations could become widespread, not only at gas stations, but roadside restaurants and motels.

That said, as above, I’m still for now of the methane school rather than an EV acolyte.

John Tillman
Reply to  John Tillman
September 22, 2018 1:12 pm

Tsk,

Tesla’s electric motors weigh more than most. I just compared the model S’ motor with a typical 3.6 L V6 engine, and they weigh about the same. But the other components are still heavier in a comparable gasoline auto.

https://www.teslarati.com/tesla-model-s-weight/

The cost of operation and maintenance is also less for an EV, but of course the initial purchase price, without subsidies, is higher. Fewer moving parts, less need for fluids, and even in high-priced electricity jurisdictions, a full charge costs less than a tank fill-up.

Teslas now have range comparable to petroleum-powered vehicles, but the charging rate is still an issue. Graphene supercapacitors might help improve charging.

Subsidy farmer Elon Musk isn’t a good auto company CEO, but his cars impress me. He just can’t make money building them, nor produce enough to meet demand in a timely manner.

Phil.
Reply to  tty
September 21, 2018 7:12 pm

Another fun effect, during the charge/discharge cycle each pound of lithium turns into five pounds of lithium carbonate. For a battery that contains as much lithium as a 70 kWh Tesla battery pack that is an extra 550 lbs!

I think you’ll find that the Lithium battery used by Tesla uses the following Lithium compound: LiNiCoAlO2
Lithium comprises even less of the mass than it does in Li2Co3

Thomas Homer
September 21, 2018 12:47 pm

“Currently, power plants equipped with carbon capture systems generally use up to 30 percent of the electricity they generate just to power the capture, release, and storage of carbon dioxide.”

30% !?!
– how does that get factored into comparisons with renewables?
– 30% of fossil fuel generated electricity is used to throttle the Carbon Cycle?

We could boost fossil fuel electricity generation 42% simply by not doing something deleterious to life?

CO2 feeds life

tty
Reply to  Thomas Homer
September 21, 2018 1:15 pm

Take it easy, nobody actually does CO2-capture except a few plants situated in oil fields which can sell the CO2 back to the oil companies who pump it down for EOR (Enhanced Oil Recovery). Supercritical CO2 (which is what you get at oilfield pressures) is an extremely good solvent for hydrocarbons.

And oilfields are about the only places in the world where it is safe to store large quantities of CO2 at high pressure. The fact that the oil is still there after millions of years show that they are completely leak-proof.

J Mac
September 21, 2018 12:54 pm

An interesting experiment but it is too early to get charge up about this.

Thomas Homer
Reply to  J Mac
September 21, 2018 1:26 pm

“An interesting experiment but it is too early to get charge up about this.”

Rather shocking comment, though I’m not certain if you’re intent is positive or negative.

Steven Fraser
Reply to  Thomas Homer
September 21, 2018 3:28 pm

Current events.

Keith R Jurena
September 21, 2018 1:01 pm

Carbophobia is just another grant simulator.

I’ve developed a solar powered carbon capture cycle..I call it photosynthesis.

tty
Reply to  Keith R Jurena
September 21, 2018 1:06 pm

I can easily beat that. I have developed three solar powered carbon capture cycles. I call them C3 photosynthesis, C4 photosynthesis and CAM photosynthesis. C3 is optimized for high CO2 environments, C4 for low CO2 environments and CAM for low H2O environments.

tty
September 21, 2018 1:02 pm

PS

It will be extremely difficult to get enough CO2 from the atmosphere to make this work. There is only 0.04% CO2 there you know (which is, admittedly 0.06 % by weight). To take a Tesla 70 kWh pack as an example again (and 100 % efficiency) it will need the CO2 from about 250 000 cubic meters of ordinary air for charging. That will require a fairly hefty induction system.

Gary Pearse
September 21, 2018 1:09 pm

CO2 in aqueous systems can be quite reactive. A patented process of mine uses electrolysis to convert lithium extracted as a soluble salt from hard rock minerals (principally spodumene, a lithium aluminum silicate) to the battery grade chemical LiOH solution at the cathode. A second battery chemical, lithium carbonate can be produced by bubbling atmospheric sourced CO2 through LiOH (also my patent). CO2 reacted so quickly that over 90% of it was captured as Li2CO3. Both products are the highest quality battery chemicals manufactured. A demonstration plant proved up the process and the world’s largest LiOH.H20 plant is now under construction. My work was the initial bench scale work in 2012, much improved by others in scaling up.

https://patents.justia.com/inventor/gary-pearse

Curious George
Reply to  Gary Pearse
September 21, 2018 2:52 pm

Do you just bubble the air through LiOH, or would a more concentrated source of CO2 be preferable?

Tom in Florida
Reply to  Gary Pearse
September 21, 2018 3:25 pm

Is that owned by Westwater Resources?

CCB
September 21, 2018 1:11 pm

Instead of the ‘Fight Climate Change’ banners, we should have spoof ‘Fight Entropy’ banners :-;

Latitude
September 21, 2018 2:07 pm

this is getting sicker and sicker….can’t even build a f’in battery without a global warming punch

Reply to  Latitude
September 22, 2018 6:36 am

Ditto to plastic straws.

September 21, 2018 2:18 pm

The basic problem is that world reserves of lithium are estimated at 16 megatons (USGS). There is actually more mass of Li than C in lithium carbonate, and we emit about 10 gigatons C a year in CO2. So all the lithium we might ever mine could store just a few hours of our emissions.

Gary Pearse
Reply to  Nick Stokes
September 21, 2018 2:43 pm

Good catch Nick. It shows the orders of magnitude out of touch with the real world. Besides having to “take out the ashes” after each charge.

ResourceGuy
Reply to  Nick Stokes
September 21, 2018 3:01 pm

The problem with all USGS estimates is the lack of knowledge of innovation, technical change, and scale of investment in supply. Did they count oil shales as reserves or even resources prior to the Bakken?

Editor
September 21, 2018 2:21 pm

The world contains something like 40m tons of recoverable Lithium. World production of Lithium is about 40k tons p.a. World emission of CO2 is about 40m tons p.a. Obviously those numbers will change over time, but equally obviously the world will run out of fossil fuels long before this Lithium-Carbon technology can make any kind of dent in CO2 emissions.

Reply to  Mike Jonas
September 21, 2018 2:51 pm

“World emission of CO2 is about 40m tons p.a”
Actually, gigatons.

Editor
Reply to  Nick Stokes
September 23, 2018 1:47 am

Oops. Thanks for the correction. Message stays very much on track of course. [Same as yours posted while I was typing mine]

September 21, 2018 2:24 pm

My design is far superior:

comment image

Larry Brown
September 21, 2018 2:27 pm

The article says? Currently, power plants equipped with carbon capture systems generally use up to 30 percent of the electricity they generate just to power the capture, release, and storage of carbon dioxide. I’m shocked. Here we go again spending significant quantities of energy for nothing. CO2 is an insignificant greenhouse gas and is not the cause of global warming, yet we are wasting up to 30 percent of a power plants power to keep it out of the atmosphere. Wow, how stupid can we get??

ResourceGuy
September 21, 2018 2:58 pm

There goes the Federal budget and debt capacity….to tax credits that exceed GDP.

Willard
September 21, 2018 2:59 pm

If it consumes lithium and carbon dioxide as it discharges, then it would require storing ever increasing quantities of lithium carbonate end product. And create greater demand for elemental lithium at what financial and environmental cost. Lithium carbonate is not exactly a promising chemical to have leaching into municipal water supplies when it is placed in its final sequestered storage container.

If is as a rechargeable battery system, it does not remove carbon dioxide from the environment.

There is no discussion of the ergonomics, environmental impact, health implications, engineering feasibility or economic considerations associated with this concept. It implies moral high ground without evidence of moral high ground.

Neil Jordan
September 21, 2018 3:43 pm

Hmmm. “Nonaqueous solution”. That leaves out alcohols and other water-miscible liquids. What’s left? In my garage I have a squirt can of low-odor “petroleum distillates” that fills the bill. So we have highly reactive lithium metal, a charcoal briquette, and some petroleum distillate. What could go wrong?

michael hart
September 21, 2018 4:23 pm

No shortage of valid criticisms above. While it is common to see researchers trying to put a positive shine on a failed project, this is one where it is difficult to see what realistic and worthwhile end they were ever trying to achieve in the first place.

John Tillman
Reply to  michael hart
September 21, 2018 4:26 pm

They achieved political correctness, which when it comes to funding, matters more than practical applied scientific results.

2hotel9
September 21, 2018 5:10 pm

I call bullshit. Lithium batteries are sealed units, they don’t “eat” anything, and if they did OSHA would ban them because they would be a safety hazard.

Chris
September 21, 2018 5:14 pm

“Currently, power plants equipped with carbon capture systems generally use up to 30 percent of the electricity they generate just to power the capture, release, and storage of carbon dioxide. Anything that can reduce the cost of that capture process, or that can result in an end product that has value, could significantly change the economics of such systems, the researchers say.”

Assuming such carbon capture systems are environmentally necessary (I am not making that assumption), this new battery configuration would at least reduce the cost of it. The researcher does not claim perpetual energy, nor does the chemical reaction violate the laws of thermodynamics. Like many of you, am I trying to keep an open mind to scientific discovery. And not all discoveries of value have a clear and irrefutable economic or environmental benefit.

nobodysknowledge
Reply to  Chris
September 22, 2018 3:01 am

Good point Chris

pat
September 21, 2018 7:05 pm

I don’t get it. I can’t think of a single useful application except perhaps on a submarine or space capsule, in which case a carbon monoxide collector may be more applicable.

WXcycles
September 21, 2018 9:15 pm

“ … Rather than attempting to convert carbon dioxide to specialized chemicals using metal catalysts, which is currently highly challenging, this battery could continuously convert carbon dioxide into a solid mineral carbonate as it discharges. … ”

Actually Li metal is commonplace, straightforward and currently very cheap to mass-produce and supply to consumer markets. We had “carbon batteries” when I was a boy and they were incomparable and very inferior to what we have today. Unless there’s a significant performance increase or significantly lower market cost why would anyone bother investing in such a battery tech?

Well, unless they’re hand-waving to lobbying for a public subsidy to save the world, i.e. losers should win.

A real battery tech breakthrough would take over the market without much fuss via being better and out-competing and supplanting other battery technologies–the good old fashioned capitalist way.


“ … This early system has not yet been optimized and will require further development, the researchers say. For one thing, the cycle life of the battery is limited to 10 charge-discharge cycles, so more research is needed to improve rechargeability and prevent degradation of the cell components. “Lithium-carbon dioxide batteries are years away” as a viable product, Gallant says, as this research covers just one of several needed advances to make them practical.

But the concept offers great potential, according to Gallant. Carbon capture is widely considered essential to meeting worldwide goals for reducing greenhouse gas emissions, but there are not yet proven, …”

ah-huh … gimme money … 10 cycles … as opposed to thousands.

tty
Reply to  WXcycles
September 22, 2018 6:44 am

“..currently very cheap to mass-produce and supply to consumer markets”

Is $ 18,000 per ton really “very cheap”?

John Tillman
Reply to  tty
September 26, 2018 1:05 pm

Zinc-air batteries are now rechargeable. Could eventually replace dangerous (flammable and explosive) and toxic (because of cobalt) Li-ion batteries:

https://www.nytimes.com/2018/09/26/business/energy-environment/zinc-battery-solar-power.html

Also cheaper than lithium.

Backed by billionaire surgeon and scientist Dr. Patrick Soon-Shiong, a South African more honest than his fellow entrepreneur and compatriot Elon Musk.

John Hardy
September 22, 2018 2:57 am

This sounds to me like flow battery akin to the Lithium-air battery – From Wikipedia “The lithium-air battery (Li-air) is a metal–air electrochemical cell or battery chemistry that uses oxidation of lithium at the anode and reduction of oxygen at the cathode to induce a current flow.”

i.e quite unlike the batteries used in EV’s today

September 22, 2018 6:21 am

Another revolutionary battery! Runs your EV straight to the moon. Zoom!

Yawn……

Donald Schmitt
September 22, 2018 7:07 am

Idea for Science Fiction disaster story:

CO2 eating batteries eat up all the CO2

Peter
Reply to  Donald Schmitt
September 22, 2018 6:50 pm

I do not want to be in the same room as these things, or down wind of scaled up versions. CO2 is essential for life, and lack of CO2 even in the trace concentrations found in our atmosphere is dangerous. I used to do anesthetics, we had monitors to make sure CO2 didn’t get too low and hurt the patient.

M__ S__
September 23, 2018 10:40 am

An incredible waste of money and time.

Paul Hogan
September 24, 2018 3:01 am

We humans breathe out 44000 ppm of co2 with every breath we exhale. Should we all commit suicide or what?

Paul Hogan
September 24, 2018 4:51 am

We humans breath out 44000, yes, forty-four thousand ppm co2. Should we all commit suicide to please a corrupt gang of fraudsters?

Robert Clark
September 24, 2018 8:29 am

Sounds way too much like a something for nothing gimmick. where does that captured carbon and oxygen go when the battery is discharged.
Any way, taking CO2 from the atmosphere reminds me of “Fallen Angels”. Wait, It’s just a novel. Right Guys. Right.